Fish Life History Patterns and Reproductive Strategies

Life History Theory

- The analysis of the phenotypic causes of variation in fitness and exposes the pervasive tension between adaptation and constraint
 - Stearns 1992. The evolution of life-histories
 - Since successful reproduction results in genetic contributions to future generations (evolutionary fitness), analysis of these behaviors often lead to evolutionary arguments

Life History Patterns

- A variety of traits that may differ among individuals or among species
 - Size of eggs produced
 - Age at first maturation
 - Frequency of spawning
 - Pattern of spawning
 - Iteroparity
 - Multiple spawnings
 - Semelparity
 - Single spawning

Advantages of Semelparity

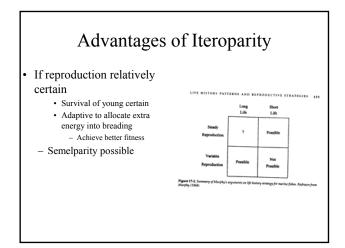
- Semelparity is favored if an animal could produce at least one more viable offspring by increasing the amount of reproductive energy utilized and then dying
 - Cole (1954) The Quart. Rev. of Biol. 29:103-137
 - · Evaluated tactics of Semelparity and Iteroparity
 - Age at first reproduction
 - Number of young in litter
 - Estimated gained future genetic fitness if animal survived to breed again
 - Fish have relatively large litter sizes (fecundity) and early maturation
 - Fish should be semelparous
 however, most fish are iteroparous

Advantages of Iteroparity

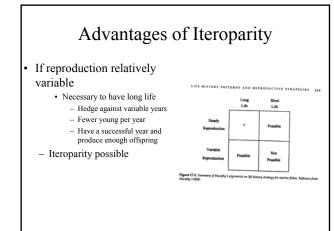
Reconciliation of Cole's predictions in that most vertebrates, especially fishes are iteroparous Garth Murphy (1968) The Amer. Nat. 102:391-403

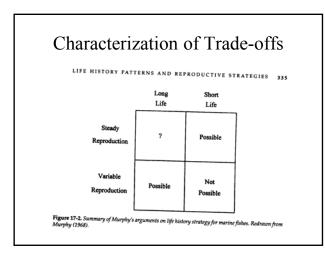
 Asked why did natural selection favor Iteroparity based on how common it was


Advantages of Iteroparity


- Evaluated other factors that influenced iteroparity

- · Survival of young
 - Variation in successful spawning
 - Variation between reproductive success and reproductive life span
 » The more variation in success of spawning, the longer the reproductive life span
 - » Spawning success more important than simple fecundity in determining iteroparity and semelparity


Advantages of Iteroparity

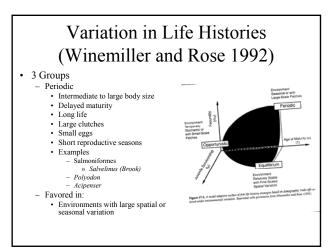

- Evaluated other factors that influenced iteroparity
 - Therefore
 - » With large variations in spawning success, over time the
 - frequency of genotypes w/ semelparous tactics would decline
 - » Iteroparous tactics would then predominate
 - Putting all your eggs in a basket:
 - » semelparous individuals, if reproduce in the wrong year, contribute nothing to the next generation due to poor success

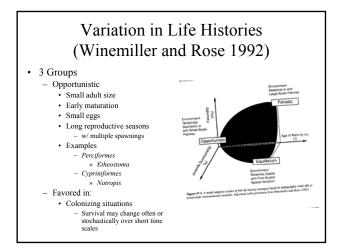
Life History Trade-offs				
Normal poor adult survival past spawning	Factor	Semelparity	Iteroparity	
 Semelparity should be favored Examples 	Young Survival	Constant or predictable	Variable or unpredictable	
 Tropical fishes Habitats become limiting during dry season after breeding Adult survival low Favors putting surplus energy into reproduction 	Adult Survival	Low	High	
 Heavily preyed upon species Small animals with many predators Chance of living to next year low, even if it doesn't die after breeding 	Reproductive Behavior	High Energetic cost	Low energetic cost	

Life History Trade-offs

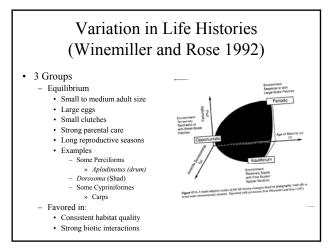
 behaviors Semelparity should be favored Example 	Factor	Semelparity	Iteroparity
 Large extensive Migrations 	Young	Constant	Variable
 Salmon Energetic cost of migration high Limits adult survival via putting energy into reproduction instead of somatic tissues 	Survival	or predictable	or unpredictable
 » Poor chance of leaving migration area 	Adult	Low	High
 Streams reach carrying capacity Can be exceeded during spawn in any given year Reach density dependence 	Survival		
 Carrying capacity allows for fairly constant » Survival predictable » May mean lower number of survival per adult, but constant for all adults 	Reproductive Behavior	High Energetic cost	Low energetic cost

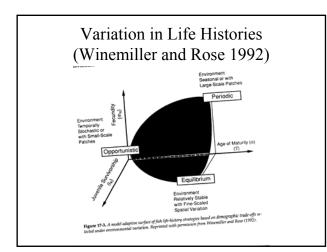
Life History Patterns in Fishes


- Three general groups of fish life history patterns
 - (Winemiller and Rose. 1992. CJFAS 49:2196-2218)
 - Opportunistic, Equilibrium, and Periodic
 Some intermediate types
 - Used 216 marine and freshwater fish species
 - 16 traits each
 - Used univariate and multi-variate analysis
 - Principle Component Analysis


Life History Patterns in Fishes

- · Goal of Study
 - Detection of invariants
 - Patterns of characteristics that are constant among animals tested



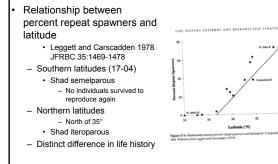

- Examples of Invariants
 - Ratio of lifespan (E) to age-at-first reproduction (a)
 - This ratios is similar for elephant and squirrels
 - But different from fish _
 - » (Charnov et al. 2001. Proc. Nat. Acad. Of Sci. 98:9460-9464)
 - Jensen. 1997. CJFAS 54:987-989
 - Proposed the following invariants described the optimization of age at maturity and lifetime energetics
 - 1. Natural mortality (M) and age at maturation (X_m) 1. M*(X_m) = 1.65
 - 2. Natural mortality (M) and growth coefficient (K) 1. M = 1.5 K
 - 3. Length at maturity [$L(x_{m})$] and maximum length $(L_{\scriptscriptstyle \infty})$ 1. $L(x_m) = 0.66 L_{*}$
 - 4. Growth coefficient (K) and maximum length (L_w) 1. L_∞ = K^{-0.33}

 Migrate to sea by end of first year

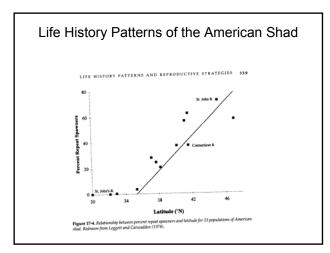
•

- Become adults in Gulf Stream
 - Water temps from 13-18 C
 In summer far off Canada
 - In winter, Cape Hatteras
 - · All life in similar environment

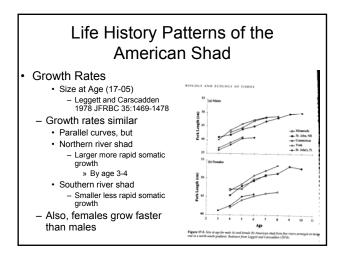
Life History Patterns of the American Shad [*Alosa sapidissima* (Wilson)]

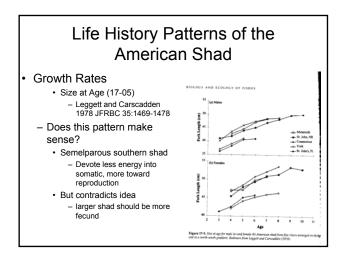

Adult shad

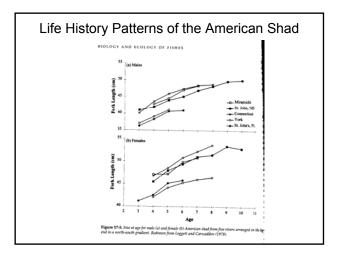
- Move with Gulf Stream within the 12-18C isotherms
 Come in contact with local rivers when marine waters come in contact with coastline
- Adults enter stream to spawn when river temps near 18C
- Only difference in stocks (populations?) of shad • Spawning location
 - Early life history location
- Different populations spawn in different rivers from Canada to Florida

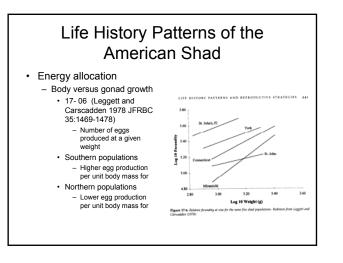

Life History Patterns of the American Shad [*Alosa sapidissima* (Wilson)]

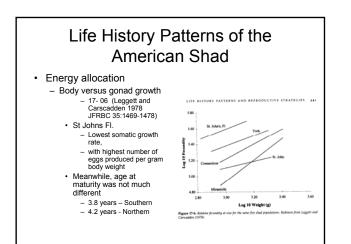
- Since most of their life is spent in common area, Gulf Stream, no differences in populations were expected
- However, large differences in life history
 Variability in rivers across latitude

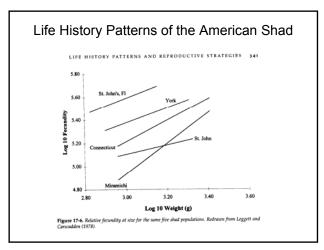

Life History Patterns of the American Shad











Life History Patterns of the American Shad

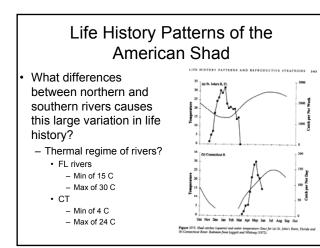
- Changes in growth and fecundity
 - Should affect energy depletion during spawning
 - Northern Shad Populations
 - Shad entered fully ripe adults, eggs fully developed
 - No further gonad growth during migrations
 - 4 year old northern females → 1,400 kcal into ovaries

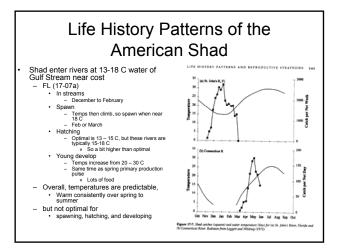
Life History Patterns of the American Shad

· Changes in growth and fecundity

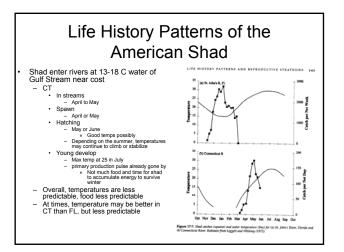
- Should affect energy depletion during spawning
- Southern Shad Populations
 - Shad invest considerable energy into gonad growth after entering rivers, but prior to spawning
 - 4 year old southern females \rightarrow 2600 kcal into ovaries (~2x as much)
 - Shunting of energy from body stores to gonad growth

Life History Patterns of the American Shad

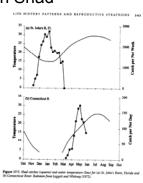

- · Changes in growth and fecundity
 - Patterns consistent with % body energy depleted during reproduction
 - · Energy depletion calculations during migration
 - Northern populations
 - » 40% stored body energy used during migration upstream
 - » 15% stored body energy used during return migration
 - » None for gonad growth
 - » Therefore: 55% of body energy used for the reproductive migration

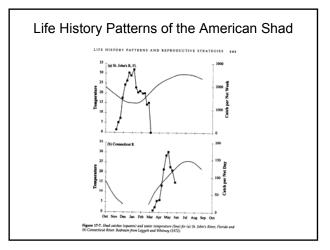


· Changes in growth and fecundity


- Patterns consistent with % body energy depleted during reproduction
 - Energy depletion calculations during migration
 - Southern populations
 - > 50% stored body energy used during migration upstream, (higher temperatures = higher metabolic demand and higher cost of migration)

 - » Therefore, 80% body stores at river entry used for spawning
 - » No energy left for return migration







- Differences btw populations
 - Temperatures and food resources,
 - rather than absolute abundances
- This predictability has a hypothesized significance on survival of the young

