Reproductive Behavior and Spawning Migrations

Introduction

• Fertilization
 – Oviparous
 • Most common type of reproduction
 – Fish lay eggs, fertilized externally
 – Ovoviviparous
 • Eggs fertilized internally
 – Held until young are born live, but no placental involvement in egg development for embryos
 – Viviparous
 • Placental development for embryos

Introduction

• Parental Care
 – Both sexes share in rearing of young
 • Mouthbrooders
 • Defense of eggs and young
Introduction

• Variation in the number of young produced
 – Highly fecund
 – Few large young

Introduction

• Prespawning behavior
 – Migration
 – Homing to spawning sites

Generalized Reproductive Behavior

1. Site Selection
2. Parental Care
3. Mate Selection
REPRODUCTIVE BEHAVIOR

• Introduction
 – Fish have a variety of reproductive behaviors
 – Broken down into 3 classification systems (Table 9-1):
 1. Non-guarders
 2. Guarders
 3. Bearers

Non-guarders

• Introduction
 – Fish that do not protect their eggs and young once spawning has been completed
Non-guarders

- Types
 1. Open substrate spawners
 - Simply scatter their eggs in the environment
 - Usually spawn in groups w/o elaborate courtship behavior or specialized reproductive structures
 - Males outnumber the females

1. Pelagic spawners
2. Benthic spawners

- Function:
 » assure that young become widely dispersed via water currents

- Structure:
 » Buoyant eggs, embryos, and larvae

- Examples:
 » Common among marine fishes
 - Tuna
 - River-dwelling
 - Surface
 - Brook silversides (Labidesthes sicculus)
 - Alewife (Alosa pseudoharengus)
Non-guarders

1. Open substrate spawners
 - Types
 2. Benthic spawners
 - Eggs adhesive and stick to substrates or in long strings to attached to the surface of substrate
 • Examples
 - Sturgeons (Acipenseridae)
 - Carp (Cyprinidae), pikes (Esocidae), golden shiner (Notemigonus crysoleucas)
 » Vegetation
 - Yellow Perch (Perca flavescens)
 » Rope eggs
 - Suckers (Catostomus) and Walleye (Stizostedion)
 » Shoals of sand, gravel, boulders

Non-guarders

2. Brood hiders
 - Hide the eggs as part of their spawning behavior, but do not show parental care
 - Most build nests and bury eggs
 • Types (examples)
 - Benthic spawners
 - Crevice spawners
 • Examples
 - Salmon and trout
 » build nests by digging, protected until eggs are laid, fertilized, and buried
 » Brook trout (Salvelinus fontinalis)
 » Cutthroat (Salmo clark)
 » Brown trout (Salmo trutta)
 » Rainbow (Oncorhynchus mykiss)
 » Rainbow trout and Salmon (Oncorhynchus spp.)
 - N.A. Cyprinidae
 » build nest of piles of stones rather than depressions
 » makes use tubercles on the head to move stones
 » Creek Chub (Semotilus atromaculatus)
 » River Chub (Hybopsis americanus)
 » Honeyhead (Hybopsis biguttata)
 » Rainbow darter (Etheostoma caerulium)
Guarders

Introduction
- Hide their eggs and guard the fertilized eggs until they hatch
 - frequently care for larval stages as well
- Due to care, guarders are usually
 - territorial
 - competitive
 - undergo elaborate courtship behavior
- Guarded by male usually
 - protect from predators
 - maintain high oxygen levels

Types

1. **Substratum chooser**
 - do not build nest but choose a substrate
 - Examples
 - Under stones or other objects
 - Johnny darter (Etheostoma nigrum), fantail darter (E. flabellare), Sculpins (Cottus), bullhead and fathead minnows (Phoxinus)

2. **Nest spawners**
 - Construct some sort of structure or cavity
 - Examples
 - Circular depression of mud, silt, sand
 - Centrarchidae including Lepomis, Pomoxis, Ambloplites, Micropterus salmoides
 - Black crappie (Pomoxis nigromaculatus)
 - Elliptical depression (circle)
 - Circular depression of gravel bottom
 - Large and Smallmouth Bass (M. salmoides and dolomieu), an
 - Tunnels
 - Channel catfish (Ictalurus punctatus) in bank
 - Yellow bullhead (Ictalurus natalis) in bottom
Bearers

- **Introduction**
 - Fish that carry their embryos around with them
 - Sometimes carry young as well

- **External bearers**
 - Examples
 - Seahorses and pipefish (Syngnathidae)
 - Males brood
 - After egg fertilization, female places embryos on the male
 - Sea Catfishes (Ariidae), Cichlids (Cichlidae)
 - Externally spawned young in the mouth
 - In cichlids, usually female carries the broods
 - Other species, males or females may brood
Bearers

- **Internal bearers**
 - Facultative internal bearers
 - Oviparous (egg-laying) killifishes (Fundulidae)
 - Eggs retained by female accidentally fertilized by normal spawning on the substrates
 - Obligate internal bearers
 - Ovoviviparity:
 - Source of nutrition for embryos is the egg yolk. Similar to externally spawned eggs
 - Provides additional care for young
 - Examples:
 - Marine Rockfish (Scorpaenidae)
 - Lake Baikal sculpins (Comephoridae)
- **Vivipary**:
 - Provision of additional nutrition while female carrying young
 - Provides added protection of young
 - Examples:
 - Sharks
 - Longspining Gambusia (Gambusia geiseri)
 - Embryos uptake nutrients from mother
Sexual Dimorphism

- Many species, males and female are indistinguishable externally
 - i.e. no sexual dimorphism or dichromatism
- Dimorphism
 - Differences in body shape
- Dichromatism
 - Differences in color

Sexual Dimorphism

- Size
 - Most widespread type of dimorphism
 - Egg laying territorial males usually larger than females
 - Example: Centrarchidae
 - Non-territorial male groups typically smaller than female
 - Striped bass
 - Sturgeon

Sexual Dimorphism

- Breeding tubercles
 - Tiny, keratinized bumps that grow on fins, head and body scales during breeding season
 - Primarily on males
 - Example:
 - Fathead minnows (Pimephales promelas)
 - Assist in maintaining contact with counterpart during spawning, stimulating during spawning, and defense of territories
Sexual Dimorphism

- **Contact organs**
 - Similar to tubercles, but have an internal core of bone
 - Assist in maintaining contact with counterpart during spawning, stimulating during spawning, and defense of territories

Sexual Dimorphism

- **Dichromatism**
 - Bright coloration of males
 - Usually a seasonal phenomenon
 - Attract mates but also predators
 - Example:
 - Darters (Percidae)
 - Minnows (Cyprinidae)

MATING SYSTEMS

- Monogamy
- Polygyny
- Polyandry
- Promiscuity (polygynandry)
MATING SYSTEMS

- Monogamy
 - One male and one female mate exclusively
 - Uncommon in fishes
 - Usually occurs when
 - Both sexes care for young
 - Territories for feeding and breeding are small
 - Or low encounter rates between sexes
 - Examples
 - Tropical cichlids
 - Both sexes rear their young together
 - Vigorously defense against competitors and predators

MATING SYSTEMS

- Polygyny
 - One male with several females
 - Large conspicuous male
 - Defends turf
 - For which females are attracted
 - Or defends female directly from other males
 - Example
 - Cottidae (sculpins)
 - Males defend prime sites for incubation of embryos
 - “Caves” underneath rocks
 - Females chose males
 - Quality of breeding site
 - And size of male
 - Males attempt to obtain exclusive mating rights with multiple females
 - Use leks or other places
 - Males gather together and display to one another
 - and females choose highest ranking males

MATING SYSTEMS

- Polyandry
 - One females seeks to mate with several males
 - Relatively uncommon
 - Occurs when females are wont to change sex
 - Or males do the brooding but can take care of fewer eggs than females can produce
 - Example of pipefish
MATING SYSTEMS

• Promiscuity (polygynandry)
 – Presumably the original fish mating system as a result of external fertilization
 • Many males and many females mate simultaneously
 – Example
 » Herrings, where shallow waters becomes white w/ sperm and bottom covered by millions of eggs

ALTERNATIVE REPRODUCTIVE STRATEGIES

• Hermaphroditism
 – One individual can be both male and female
 – Synchronous hermaphroditism
 • Possess both ovarian and testicular tissue
 – Uncommon
 – Sequential hermaphroditism
 • Individuals change sex
 – Protogyny
 » Most common
 » Females change into male
 » Parrotfishes, wrasses, groupers
 – Protandry
 » Less common
 » Male converts into female
 » Anemone fishes

ALTERNATIVE REPRODUCTIVE STRATEGIES

• Protogyny
 – Female changes into male
 • Most common
 – Example
 • Large dominant male gets removed by a predator and one of the females becomes a dominant male
 » parrotfishes, wrasses, groupers
ALTERNATIVE REPRODUCTIVE STRATEGIES

- **Unisexuality**
 - **Parthenogenesis**
 - Females produce only female offspring with no involvement of males
 - Asexual reproduction
 - Rare in fishes
 - Example
 - Texas silverside (Menidia clarkhubbsi)

ALTERNATIVE REPRODUCTIVE STRATEGIES

- **Unisexuality**
 - **Gynogenesis**
 - Amazon Mollies (Poeciliidae)
 - All female species
 - Sexual parasites of bisexual species of the same genus
 - They were originally derived from these genera as hybrids
 - Sperm from host species required to activated development of Amazon Molly eggs
 - But union of male and female chromosomes does not occur

ALTERNATIVE REPRODUCTIVE STRATEGIES

- **Unisexuality**
 - **Hybridogenesis**
 - Unisexuality of Mexican mollies
 - Mating between all female species of Mexican mollies and a host male of another species
 - Hybrid formed
 - During oogenesis in the hybrid females
 - Parental male contributed chromosomes are lost in meiosis
 - Therefore, only female genes are passed on to the next generation
 - Self perpetuating strain of all female fish
ALTERNATIVE REPRODUCTIVE STRATEGIES

- **Unisexuality**
 - **Hybridogenesis**
 - Why are clones successful
 1. Heterosis (hybrid vigor)
 - Larger size, higher survival rates
 2. Increased reproductive potential of all female population
 3. Clones genetics are advantageous in their environment
 - However
 - Need to overcome low genetic variability
 - Continued dependence of unisexual fish on bisexual males
 - However
 - If sperm of bisexual male is not limiting,
 - Competition between appropriate females and unisexual females not a problem

Examples of Reproductive Behavior

- **Rainbow Trout**
 - Redd building
 - Female selects site for digging redd in gravel
 - Gravel size moved directly related to female size
 - Female lies on her side
 - Swims along bottom displacing gravel with tail
 - Makes a depression that is cleaned of sediment
 - Measures depth with anal fin
 - Appropriate depth must be attained

Examples of Reproductive Behavior

- **Rainbow Trout**
 - Male Agonistic Encounters
 - Several males encounter and court her for right to breed with female while she is excavating
 - Males compete for right to breed
 - Once redd dug to her satisfaction
 - Males quiver next to and over nest
 - Induces female to spawn
 - Males may also nudge her abdomen to encourage spawning
Examples of Reproductive Behavior

- Rainbow Trout
 - Female lays eggs
 - Successful male fertilizes eggs
 - Female chases off her mate
 - As well as any other males
 - Other males may eat eggs
 - Female covers eggs
 - Moves gravel back over depression
 - Abandons redd
 » Makes sense because survival after spawning is low

Atlantic Salmon Example

Film clip - Atlantic salmon creating nest and spawning - Atlantic salmon - Salmo salar - ARKive

Examples of Reproductive Behavior

- Alternative male strategies
 - Salmon and trout
 - Large aggressive males dominate spawning
 - Jack males (sneakers):
 - Small, silvery males that sneak into reds
 » Release sperm simultaneously with a mated pair
Examples of Reproductive Behavior

• Bluegill
 – Late spring
 • Large drab-colored age 5 – 8 males build nest
 » Small circular depressions in shallow area
 » Muddy or sandy substrate
 • Males defend nest against other males
 • Females develop bright orange coloration on ventral surface
 » A lot smaller in size than males
 • Males circle nest to attract females
 » Will attract as many females as he can to spawn in his nest
 » Eggs therefore a composite of many females and one male
 • Once spawning complete, male drives off the females and any other fish
 • Guards the nest
 • May even fan nest

Examples of Reproductive Behavior

• Alternative Male Strategies
 – Bluegill (Gross and Charnov 1980; Gross 1982)
 • Large male (nest defender)
 • Alternatives
 » Sneaking
 » Small male hides near active nest and dashes in to release sperm while resident male spawns with female
 » Satellite male
 » Mimics females in coloration and behavior
 » Hovers over a nest of a breeding male, reaching mating pair in time for spawning
 » These males spawn at earlier age than nest defender male, do not have to defend nests

SEX CHANGE IN FISH

• Environmentally determined sex
 – Atlantic silversides (Menidia menidia)
 • Low temperatures:
 – Larvae more likely to develop into females
 – Southern brook lamprey (Ichthyomyzon gagei)
 • Larval densities high and temperatures are low
 – More males
SPAWNING MIGRATIONS

• Spawning Migrations
 – Allow fish to use resources that are geographically isolated and maximize benefits of both
 • Shallow areas
 – Early survival and growth are best
 • Deeper waters
 – Allow for optimal adult growth
 – Feeding and survival migrations
 • Arctic species
 – Migrate to main rivers or estuarine environment before winter
 – Small tributaries may freeze solid

SPAWNING MIGRATIONS

• Catadromous Eels (Anguillidae)
 – Spawning as adults in the open ocean
 – Occurs in tropical to subtropical seas
 – Usually at great depth
 – Adults are semelparous
 – Die after spawn
 – Eggs develop into segment larva called leptocephalus
 – Larvae are so different from adults, originally thought of as different species
 – Rearing of larvae for some time at sea
 • 1 to several years
 • Propelled back to streams by oceanic currents
 – Return to streams for adult life
 • Unlikely that larvae home to same stream system as their parents
 • North American and European eels
 • Appears to spawn in different locations and larvae show fidelity to continent
 • Also unlikely adults home to same ocean location to spawn

SPAWNING MIGRATIONS

• Anadromous Salmon
 – Swim upstream to spawning in as adults
 – Larval and juvenile stage in stream for some time
 – Migrate to oceans for adult life
SPAWNING MIGRATIONS

• The Stream phase of Salmon Migrations
 – Why should fish develop elaborate migration and homing? (Hasler et al 1978)
 • Consistency in numbers and early survival
 – Animals that breed in certain kinds of special habitats
 » Produce similar number of young per year
 • If adults disperse widely, finding appropriate site for spawning and survival is not easy
 • Homing then becomes important, even more important the further it disperses from spawning area
 – Especially if spawning is brief during fall
 » Difficult to judge flow conditions, predator density, and other characteristics
 – Homing provides predictability

SPAWNING MIGRATIONS

• The stream phase of Salmon Migrations
 – Advantages of homing
 • Homing also allows for adaptation to local conditions
 – Example of the American shad
 » Adaptations are related to characteristics of spawning sites
 » Allow for adaptation to occur and stocks differentiate
 » Via limited gene flow
 – Problems of homing
 • If spawning of habitat vulnerable
 – Perfect homing could cause a gene pool to become extinct under habitat damage
 – Examples
 » Impassible log jams
 » Deforestation
 – Therefore
 – Some degree of straying may allow for limited genetic mixing and re-colonization
 – Fortunately
 • There is some intermixing during spawning
 » But is variable among salmon stocks

SPAWNING MIGRATIONS: The stream phase of Salmon Migrations

• Use of Olfactory Cues
 – Hasler et al. Hypothesized
 • Salmon could smell the odor of their home stream for homing
 • Issaquah River Washington (Hinkley and Hasler 1954. JRBC 11:472-478)
 – Captured upstream migrations salmon in East Fork and mainstem
 – Olfactory marked them
 » Plugged (Occulated) nasal passages of half the fish
 » Other half used as controls
 – Transported both groups back downstream and released them
 – Expectations
 – East Fork 1/5 size of main stem
 » Therefore based on random movements, 80% should go up mainstem, 20% up East fork
 – Recapture 46 Control main river origin
 – 100% recognized from original capture location
 – 86% made correct choice
 – 20% correct
 – East Fork Origin
 – 71% of control fish chose the correct river
 – 86% occulated fish returned to wrong river
SPAWNING MIGRATIONS: The stream phase of Salmon Migrations

- Use of Olfactory Cues
 - Hypothesize that young salmon could identify water at rearing site and use that as adult to find home
 - Donaldson et al
 - Pheromones
 - Hormones used to communicate with others
 - Emit chemicals with excretory products
 - Donaldson and Allen 1957 TAFS 87:13-22
 - Marked and released fingerling salmon from a distant hatchery into ponds at UW or a nearby river
 - Smolt = saltwater capable form
 - Parr = freshwater form
 - Several years later
 - Collected returning adults in traps in rivers or fish ladders of UW ponds
 - Salmon learn chemical cues from their home waters at smolting, not something that was genetic

SPAWNING MIGRATIONS: The stream phase of Salmon Migrations

- Use of Olfactory Cues
 - How can a fish that breeds in a small mountain stream, but migrates thousands of miles to the Pacific find that small home stream?
 - Oshima et al 1969 JFRBC 26:2123-2133
 - Recognize a series of chemicals along the way
 - Allows simpler solving of straying
 - Reach mouth of first river, many stock have same chemical cues
 - Move upstream, next cue differentiate stocks

SPAWNING MIGRATIONS:

- Open Ocean Phase of Migration
 - Chemical cues unlikely cues to migrate open ocean to the coast of their natal stream
 - Sun Compass
 - Suns position and time of day must be known
 - Rises in east
 - Early morning
 - South
 - At noon in northern hemisphere
 - Sets in west
 - Afternoon
 - Some scientist think
 - Fish use polarized light
 - Once light hits water it becomes polarized in direction of sun
 - May aid fish in their ability to detect the direction of the sun
SPAWNING MIGRATIONS: Open Ocean Phase of Migration

• Sun Compass
 – Bluegill trained to escape to north when frightened
 • Area of 16 potential escape directions (Fig. 16-3)
 • Sunny afternoon
 – Most hiding done in north
 • Sunny morning
 – Most hiding done in north
 – Moved in any direction
 • Artificial light
 – Orientated to light as if were the sun
 » Located north in morning
 » But south in afternoon because lights position was changed

• Other cues shown to be used
 – Magnetic
 – Celestial objects at night
 – Oceanic currents
• Probably a combination to all cues
SPAWNING MIGRATIONS: Open Ocean Phase of Migration

• Schools and Oceanic Migrations
 – Schools of fish w/ no obvious leader and continual swimming readjustment
 • May navigate more precisely than isolated individuals
 – Statistical theory of central limits theorem supports this
 – Larger schools of fish should be more accurate in homing than smaller schools
 » Larkin and Walton 1969. JFRBC 26:1372-1374

<table>
<thead>
<tr>
<th>Direction Finding Abilities</th>
<th>School Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ±48.8° ±18.3° ±8.5°</td>
<td>5</td>
</tr>
<tr>
<td>4 ±28.6° ±11.4° ±8.1°</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

MIGRATIONS

• Ictaluridae
 – Longer range migrations
 • Move along stream corridors
• Centrarchidae
 – Small range of migrations
• Percidae
 – Smaller range of migrations
 • Localized riffles