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ABSTRACT
Summary: Pyrosequencing of 16S rDNA is widely used to study
microbial communities, and a rich set of software tools supports
this analysis. Pyrosequencing of protein-coding genes, which can
help elucidate functional differences among microbial communities,
significantly lags behind 16S rDNA in availability of sequence analysis
software. In both settings, frequent homopolymer read errors inflate
the estimation of microbial diversity, and de-noising is required to
reduce that bias. Here we describe FunFrame, an R-based data-
analysis pipeline, that uses recently described algorithms to de-noise
functional gene pyrosequences, and performs ecological analysis
on de-noised sequence data. The novelty of this pipeline is that it
provides users a unified set of tools, adapted from disparate sources,
and designed for different applications, that can now be used to
examine a particular protein coding gene of interest. We evaluated
FunFrame on functional genes from four PCR-amplified clones
with sequence depths ranging from 9,084 to 14,494 sequences.
FunFrame produced from 1-9 OTUs for each clone, resulting in an
error rate of from 0-0.18%. Importantly, FunFrame reduced spurious
diversity while retaining more sequences than a commonly-used
de-noising method that discards sequences with frame-shift errors.
Availability: Software, documentation, and a complete set of sample
data files are available at http://faculty.www.umb.edu/jennifer.bowen
/software/FunFrame.zip.
Contact: Jennifer.Bowen@umb.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Pyrosequencing of 16S rDNA is commonly used to study microbial
community structure, and existing bioinformatics pipelines are
primarily designed for the analysis of 16S rDNA (Caporaso et al.,
2010b; Schloss et al., 2009). Noise from DNA sequencing errors
upwardly biases the estimates of microbial diversity (Huse et al.,
2007; Kunin et al., 2010). Substantial progress has been made to
remove noise artifacts from 16S rDNA sequence datasets (Huse
et al., 2010; Quince et al., 2009, 2011).

Targeted metagenomics of protein coding genes offers the
possibility of focusing on the diversity, abundance, and expression
of specific genes, particularly those genes that encode enzymes
critical to biogeochemcial cycling. Protein-coding sequences
fundamentally differ from non-coding 16S rDNA in that the
genetic code implicitly constrains the sequences to the 61 amino-
coding triplets. This distinction is particularly relevant with
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pyrosequencing, as the technology is prone to misread the lengths of
long homopolymers, thereby creating the appearance of frameshift
mutations. To reduce the inflated diversity bias with protein-coding
genes, a commonly-used approach discards sequences containing
unexpected stop codons (Jones et al., 2008; Iwai et al., 2010;
Rozera et al., 2009). A more nuanced error detection algorithm,
HMM-FRAME, was recently introduced (Zhang and Sun, 2011).
In HMM-FRAME, a hidden-Markov model (HMM) of the target
protein, combined with a probabilistic model of homopolymer
errors, detects and corrects the frameshifts caused by homopolymer
read errors. In addition, the algorithm reports HMM alignment
scores, which can be used in downstream quality filtering.

To facilitate targeted metagenomics using PCR-amplified protein-
coding genes, we produced FunFrame, a complete bioinformatics
pipeline that utilizes HMM-FRAME followed by chimera detection,
OTU clustering, rarefaction, and diversity estimation (Fig. S1).
Additionally, FunFrame performs clustering and ordination using
UniFrac and Bray-Curtis metrics (Figs. S2and S3).

Contrasting with the pipelines QIIME (Caporaso et al., 2010b)
and Mothur (Schloss et al., 2009), FunFrame centers around the
R Project for Statistical Computing (R Core Team, 2012), which
facilitates analysis with a rich set of ecological, statistical, and
visualization tools (Borcard et al., 2011; Oksanen et al., 2011).

2 METHODS
The FunFrame pipeline begins with HMM-FRAME (Zhang and Sun, 2011)
for pyrosequencing error analysis; UCHIME (Edgar et al., 2011) for chimera
detection (running in de novo mode without a reference database); and
ESPRIT-Tree (Cai and Sun, 2011) for OTU clustering. FunFrame performs
ecological analyses on the resulting OTU table. Sub-sampled diversity
estimation is computed with QIIME (Caporaso et al., 2010b). Bray-Curtis
distances of Hellinger-transformed counts are computed in Vegan (Oksanen
et al., 2011). To compute unweighted and weighted UniFrac metrics
(Hamady et al., 2010), representative OTUs are aligned with PyNAST
(Caporaso et al., 2010a); a phylogeny is inferred using FastTree (Price
et al., 2010); and UniFrac metrics are computed from the tree. Principal
coordinates analysis and hierarchical clustering are performed in R on the
Bray-Curtis and UniFrac metrics. Rarefaction curves and alpha diversity
estimates are computed in Vegan. Redundancy analysis and constrained
correspondence analysis are computed with user-supplied environmental
variables and displayed as biplots using Vegan.

FunFrame programs are written in R and Python. A bash script runs the
full pipeline; alternatively, users can run pipeline stages individually. A user-
customizable configuration file specifies all parameter settings. Installation
and operating instructions are provided with the software distribution, as are
sample data with expected outputs.

Environmental clones containing the gene nirS, a gene in the microbial
denitrification pathway (Zumft, 1997), were prepared (GenBank accessions
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Fig. 1. Rarefaction curves based on FunFrame compared to stop codon
filtering. Colors represent biological samples; solid and dotted lines
produced by FunFrame and stop codon filtering, respectively. FunFrame
tends to retain more sequences and produce less OTU inflation.

KC203032–KC203035) and sequenced along with amplicon libraries
(Table S1) of environmental samples taken from sediments of the Great
Sippewissett Salt Marsh, Cape Cod, MA, USA (Supplementary Methods).
Sequences mismatching the 5’ primer or having ambiguous bases were
removed, and remaining sequences were trimmed to 432 bp. With these
inputs, we ran FunFrame using the cytochrome D1 HMM from Pfam
(accession PF02239.10), and retained sequences with HMM scores above
85. OTUs were defined as sequences within a 0.05 divergence. To compare
FunFrame against stop codon filtering, FunFrame was modified to replace
HMM-FRAME with logic that translates sequences in three reading frames,
and retains those with a full reading frame.

3 RESULTS AND DISCUSSION
In evaluating HMM-FRAME over the stop codon filtering approach,
we sought two objectives. First, we wanted to minimize the upward
diversity estimation bias due to homopolymer errors, and we
measured this property by analyzing the OTU counts of four clone
libraries, measured at sequence depths of 9,084, 5,780, 11,382, and
14,494. Of these four libraries, FunFrame reported 9, 3, 3, and 1
OTUs per clone, while the stop codon filter approach reported 11,
4, 3, and 2 OTUs per clone (Table S2). Fig. 1 shows that FunFrame
produces lower OTU counts than stop-codon filtering.

Our second objective was to maximize the number of non-noisy
sequences retained, which effectively increases the likelihood of
detecting rare species. Starting with 119,663 total reads, the HMM
filtering approach retained 117,659 (∼ 98%), while stop codon
filtering retained 104,347 (∼87%) reads. After subsequent chimera
detection, FunFrame retained 108,603 (∼91%) reads versus 95,902
(∼80%) for stop codon filtering (Table S3). This improvement
is reflected in the greater number of sequences shown in the
solid, compared to the dotted lines in Fig. 1. Analysis of these
data demonstrates the pipeline’s capacity to uncover ecologically
meaningful patterns in environmental sequences (Figs. S2 and S3).

In both criteria, FunFrame performed better than the stop codon
approach. FunFrame discards sequences with HMM scores below

a configurable threshold, and adjusting this threshold can trade off
sequencing depth for OTU inflation. The results indicate that this
parameter can be set such that both objectives exceed the results
from the stop codon filtering approach.

Microbial ecological analysis based on functional genes is an
enormously powerful paradigm, which we believe will become
widely used as DNA sequencing costs continue to decline. We offer
FunFrame to the community with the hope that it will contribute to
the development of this important area.
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