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Materials and Methods 
1. Data and Morphospace Estimation 

We conducted our analyses using the morphological and phylogenetic data 
described in (17). Our sample included 100 of the 119 currently recognized species of 
Anolis from the main islands of the Greater Antilles (Cuba, Hispaniola, Jamaica, and 
Puerto Rico). These species were originally selected on the basis of the joint availability 
of morphological and phylogenetic data, but they nearly fully represent the phylogenetic 
and ecomorphological diversity of Greater Antillean anoles. For all but two unsampled 
species (both rare Haitian endemics for which molecular data are not yet available), we 
have included at least one ecologically and morphologically similar sibling species in our 
data set. Our study therefore nearly completely represents the evolutionary diversity of 
Greater Antillean anole ecologies and morphologies. 

We used morphological data from the data set reported in (17). Those authors 
reported mean values for each trait for each species, sampling 7.9 specimens per species 
on average (range: 1-19). The outcome of any multivariate test for convergence will 
depend on the types of traits selected to define the morphospace, as well as the precision 
with which they were measured. Therefore, from the set of traits used in (17), we selected 
a subset of 11 accounting for the most ecologically important axes of morphological 
variation in Anolis, as assessed in prior studies: snout-to-vent length (SVL), tail length, 
femur length, tibia length, length of metatarsal IV, length of hindtoe IV, humerus length, 
radius length, length of foretoe IV, toepad lamella number for hindtoe IV, and toepad 
lamella number for foretoe IV. We chose these traits because they are known to correlate 
with habitat use and niche partitioning in Caribbean anoles, and they closely correspond 
to traits used in previous studies of ecomorphological convergence in anoles (14), but we 
note that additional ecomorphological characters such as mass were not included because 
they were not available for all species. A single investigator (D.L.M.) made all 
measurements, discarding and re-taking the first third to ensure that repeatability 
estimates were comparable across the sample (17). 

We conducted all phylogenetic comparative analyses using the ultrametric 
maximum clade credibility (MCC) mtDNA phylogenetic tree for Greater Antillean anoles 
from (17). Chronograms in that study were estimated by partitioned Bayesian analysis of 
a ~1,500 bp, six-gene fragment of mitochondrial DNA, assuming an uncorrelated relaxed 
molecular clock model, using the program BEAST (35). To assess the effect of 
phylogenetic uncertainty on our results, we repeated our analyses on a sample of 100 
trees from the posterior distribution of ultrametric mtDNA phylogeny estimates from 
(17). Although these phylogenies were estimated using mitochondrial data, we note that a 
multilocus nuclear study of anole relationships based on less comprehensive taxon 
sampling (61 Greater Antillean spp.) has yielded topologically similar estimates of Anolis 
phylogeny (36). While the sampling for this nuclear DNA phylogeny is insufficient to 
test for convergence among entire Greater Antillean island faunas, we used it to confirm 
that both nuclear and mitochondrial DNA Anolis phylogenies yield similar models of trait 
evolution. To test this, we conducted convergence analyses on 61-species data sets using 
both types of phylogenies, obtaining qualitatively identical convergence results 
(Materials and Methods, Section 5a). The absolute timing of anole diversification in the 
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Greater Antilles remains poorly known, but we rescaled all trees to a crown age of 50 Ma 
so that estimates of evolutionary parameters would be in roughly appropriate units (14).  

To generate a morphospace for Greater Antillean anole species, we first size-
corrected all shape trait measurements using phylogenetic regression on SVL (37) in the 
R software package ‘phytools’ (38). We then conducted a phylogenetic principal 
component analysis (pPCA) (37, 38) on the covariance matrix of SVL and shape 
residuals to obtain evolutionarily orthogonal axes of morphological trait variation. We 
retained the first four pPC axes, which collectively explained 93% of variation, based on 
examination of an eigenvalue scree plot, and because these axes exhibited meaningful 
correlations with our original unrotated variables, while the remaining axes were difficult 
to interpret. For the analysis based on the MCC tree, we report the trait loadings, 
eigenvalues, and relative variances explained for our pPC axes in Table S1, and we report 
pPC scores in Table S2. As we used phylogenetic information to create our size and 
shape morphospace, these preparatory steps were included in our analyses of 
phylogenetic uncertainty. pPCA eigenvalues and loadings varied slightly, but were very 
similar across phylogenies (data available upon request). 
 
2. Fitting Models of Continuous Trait Evolution, and Simulating Null Morphospaces 

To evaluate whether the extent of convergence in Greater Antillean Anolis is 
exceptional, we compared empirical convergence statistics to null distributions generated 
by evolutionary simulation. We simulated data separately for each trait axis using 
whichever of a set of models of continuous character evolution best fit each axis (we 
refer to this as the “trait-specific” null model). First, we compared the fits of four models 
of continuous character evolution for each trait axis using small-sample corrected Akaike 
information criterion (∆AICc) values (Table S3). We compared the following models: 
Brownian motion (BM), early burst (EB), time (TM), and lineage diversity (LD) (17, 19). 
The latter three models are generalizations of the BM model in which the rate of trait 
evolution may change as a function of time (for EB and TM) or island-specific species 
diversity estimates (for LD). The EB and TM models differ primarily in that the rate of 
evolution changes exponentially under the EB model, and linearly under the TM model. 

Using the favored model for each axis, we next simulated 999 four-dimensional 
null trait data sets, using the MCC phylogeny and empirically-estimated generating 
parameters from the model-fitting exercise described above (generating parameters and 
other model details are reported in Table S3). We simulated data one axis at a time, then 
combined these axes to build our null morphospaces (note that when we repeated 
analyses using phylogenies from the posterior distribution, we also repeated this trait-
specific model-fitting procedure).  

For the sake of completeness, we simulated four additional sets of null 
morphospaces, this time simulating all trait axes under the same model (one set of 
morphospaces simulated under each of the BM, EB, TM, and LD models of evolution; 
parameter estimates are also found in Table S3). For all convergence tests, we obtained 
significant results that were qualitatively identical to those presented in the main text 
using data generated under all of these alternative models (see Materials and Methods, 
Sections 3 and 4d, below). We did not simulate using a multivariate model of trait 
evolution, because the axes of our empirical morphospace are geometrically orthogonal 
and evolutionarily uncorrelated, but we note that for data sets for which individual traits 
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exhibit evolutionary correlations, it would be appropriate to simulate null data with the 
estimated correlation structure. We fit models and conducted simulations using the R 
packages ‘ape’ (39), ‘geiger’ (40), ‘phytools’ (38), and ‘surface’ (20). 

 
3. Testing for Among-Island Faunal Similarity 

We tested for species-for-species matching among the four Greater Antillean 
islands by comparing an empirical among-island species similarity statistic to a simulated 
evolutionary null distribution. For each species in the Greater Antilles, we recorded the 
Euclidean distance to its nearest neighbor in morphospace from each of the other three 
islands. To quantify average among-island faunal similarity with a single metric, we 
calculated the island-weighted average of all among-island nearest neighbor distances 
(NND, calculated by first averaging among-island nearest neighbor distances for all 
species occurring within each island, and then averaging these four values). We then 
calculated the same set of distances for the simulated morphospace data sets described 
above, and compared the empirical among-island matching statistic to this null 
distribution to test whether Greater Antillean anoles exhibit exceptional faunal similarity. 
We found significant evidence for exceptional faunal similarity whether null data sets 
were simulated using the trait-specific null models or any of the single models (BM, EB, 
TM, and LD; Fig. S1). We also consistently found exceptional faunal similarity when we 
repeated the trait-specific null model simulations on the 100 phylogenies from the 
posterior distribution (mean NND = 0.31; P ≤ 0.007).  

 
4. Testing for Convergence on the Macroevolutionary Adaptive Landscape 

We tested for convergent evolution in Greater Antillean Anolis using 
“SURFACE” (a recursive acronym for “SURFACE Uses Regime Fitting with AIC to 
model Convergent Evolution”) (20), a method available as a package through the 
Comprehensive R Archive Network (CRAN) (http://cran.r-
project.org/web/packages/surface/). The main purpose of this method is to identify 
lineages that have converged in phenotype without using a priori designations of 
ecomorphs. It builds upon two advances in phylogenetic comparative methods: the 
development of the “Hansen” model of adaptation of lineages to multiple distinct 
adaptive peaks (21, 22), and the use of stepwise algorithms such as MEDUSA (Modeling 
Evolutionary Diversification Using Stepwise AIC) (23) and trait MEDUSA (24) to locate 
regions of a phylogeny containing shifts in rates of diversification and trait evolution, 
respectively. SURFACE combines these features by allowing the data to dictate the 
placement of a peak shift on the macroevolutionary adaptive landscape [sometimes called 
a “selective regime shift” (20-22, 27)] on whichever branch of the tree most improves the 
AIC at each step. After adding as many adaptive peak shifts as are supported by the data, 
the method evaluates whether shifts in different lineages correspond to attraction to the 
same adaptive peak. Finally, the extent of convergence can be compared to a null model 
using simulation-based hypothesis tests.  
 In what follows, we describe the major features of this method and how we 
applied it to the Anolis data set. The SURFACE algorithm is described in greater detail in 
(20), which also presents the results of simulation tests that demonstrate desirable 
statistical properties and show that the tool can effectively recover the true adaptive 
landscape structure of data sets comparable in size to the anole data set used in the 
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present article. The simulation-based hypothesis test we employ here has good power to 
detect true convergence given multidimensional trait data for a moderate-sized radiation 
(n = 64 species), and has appropriate type I error rates when the generating model 
contains adaptive peak shifts but no true convergence.  
 
4a. The Hansen model of continuous trait evolution 

SURFACE proceeds by fitting a series of Hansen models of stabilizing selection 
around optimum phenotype values. Hansen models represent the adaptive evolution of a 
radiation on a Simpsonian macroevolutionary trait landscape (3, 22, 27). Within a 
radiation, different lineages may evolve under different selective regimes corresponding 
to distinct ecological niches (Simpson referred to these regimes as “adaptive zones”). On 
the macroevolutionary landscape, each such regime corresponds to an adaptive peak with 
a distinct optimum in trait space (21, 22). In the Hansen model, trait evolution is modeled 
as an Ornstein-Uhlenbeck (OU) process, whereby evolutionary change along each branch 
of a phylogenetic tree includes both a stochastic Brownian motion component and a 
deterministic tendency toward its adaptive optimum (21, 22). The parameters governing 
this process are the Brownian diffusion parameter (σ2), the rate of adaptation towards the 
selective optima (α), and the positions of the optima (θ, one parameter per adaptive peak). 
The parameters of any Hansen model can be estimated using maximum likelihood (21). 
Past uses of the Hansen model have compared specific phylogenetic peak shift 
placements to test whether lineages are attracted to hypothesized adaptive peaks; 
SURFACE takes an alternative approach by allowing the data to dictate the selection of a 
Hansen model.  

 
4b. Fitting a model with adaptive peak shifts to Anolis ecomorphology data 

SURFACE consists of a two-phase stepwise procedure to test for 
multidimensional convergent evolution. In the “forward” phase, adaptive peak shifts are 
added to a Hansen model in a stepwise fashion to generate models representing 
successively more complex macroevolutionary adaptive landscapes. In the “backward” 
phase, convergent peaks are collapsed together, yielding a model from which we can 
estimate the prevalence of convergence in a given radiation. 

We fit models of macroevolutionary convergence to the Greater Antillean Anolis 
data set, using the four morphological traits and phylogenetic information described 
above. We focus on estimating the macroevolutionary landscape with the MCC 
phylogeny, using simulations to test for exceptional convergence. We also fit models 
using 100 trees from the Bayesian posterior distribution to assess the sensitivity of our 
results to phylogenetic uncertainty, repeating the pPCA analysis for each tree as 
described above.  

 
Phase 1: Identifying adaptive peak shifts 

The starting point for the analysis is the single-peak Ornstein-Uhlenbeck model, 
in which all lineages are attracted to the same adaptive optimum. For a data set with m 
traits and n species, this model has 3m+1 parameters: estimates of θ, σ2, and α, for each 
trait, and a parameter representing the presence of the ancestral peak shift that affects the 
entire radiation. We used maximum likelihood optimization to estimate the parameters of 
this model (21) separately for each trait. We then added log-likelihoods across traits to 
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obtain an overall log-likelihood, assuming that the evolutionary parameters σ2
 and α are 

independent between traits. To measure model performance for comparison with models 
estimated in subsequent steps, we calculated the sample-size corrected AICc, where the 
sample size is the total number of trait values (n × m). 

Adaptive peak shifts are then added to this initial model, first by fitting all 
possible Hansen models with the ancestral shift at the root and a second peak shift placed 
at the origin of one of the 2n-2 branches in the tree. We calculated log-likelihoods by 
adding across traits as before, then calculated AICc values for each candidate model. The 
number of parameters is defined as k+(k′+2)m, where k is the number of peak shifts in the 
model and k′ is the number of adaptive peaks (during the forward phase all peaks are 
distinct, so k′=k). Adding a peak shift to the model thus increases the number of 
parameters by m+1, accounting for the complexity of both the adaptive landscape (m new 
estimates of θ) and the evolutionary history of the group (one new parameter 
corresponding to the placement of a new peak shift). The candidate model with the 
lowest AICc score is selected, and a peak shift is placed on the corresponding branch. 

This process is iterated, with the positions of all previously added peak shifts 
fixed, and one new peak shift added at each step, until the AICc stops improving by at 
least a threshold value ΔAICc* = 0 [i.e., accepting all iterative model updates that 
improve the AICc, which generally results in good performance (20)].  

 
Phase 2: Collapsing similar adaptive peaks 

The forward phase of the analysis results in a Hansen model with k peak shifts on 
the tree, which correspond to k′=k distinct adaptive peaks, each with an m-dimensional 
trait optimum. The backward phase uses a second stepwise AICc procedure to determine 
whether some of these adaptive peaks can be collapsed into convergent peaks reached by 
multiple shifts. We preserve the placement of the peak shifts on the phylogenetic tree, but 
allow multiple shifts to converge toward the same adaptive peak. While adding a peak 
shift increased the number of parameters by m+1, collapsing two adaptive peaks into one 
decreases the number of parameters by m. This is because the one parameter 
corresponding to the peak shift remains in the model, but m fewer optima are estimated as 
k′ decreases by one. Thus, while reducing the number of optima means that the likelihood 
cannot improve when peaks are collapsed, the AICc can improve because fewer 
parameters are estimated due to the macroevolutionary adaptive landscape containing one 
fewer peak. 

Starting with the Hansen model from the last step of the forward phase, we move 
through all pairwise combinations of adaptive peaks i and j, and re-fit the model after 
collapsing the two peaks into a convergent peak. This results in k(k-1)/2 candidate 
models, some of which may represent improvements over the previous model (i.e. 
ΔAICc(ij) < ΔAICc*). We follow Ingram and Mahler (20) in allowing multiple pairs of 
adaptive peaks to be collapsed at each step, while ensuring that all peak collapses were 
compatible (i.e., all collapses meet the criterion ΔAICc < ΔAICc*). This process of 
collapsing convergent peaks is iterated until no further collapses would improve the 
model by at least AICc*.  

 
4c. Visualizing the Anolis macroevolutionary adaptive landscape and testing for 
exceptional convergence 
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The SURFACE routine led to substantial improvements to the AICc of the Hansen 
model describing Anolis diversification compared to alternative models of trait evolution 
(the progress of stepwise model improvement with adaptive peak-shift addition and 
collapse is shown in Fig. S2; the final Hansen model is strongly favored over both the 
initial Hansen model (∆AICc = 340.4) and the non-convergent forward phase Hansen 
model (∆AICc = 162.6). For the MCC tree analysis, we identified shifts to k = 29 
adaptive peaks on the four-dimensional macroevolutionary landscape during the forward 
phase, and collapsed these into k′ = 15 distinct peaks during the backward phase (Table 
1). The extent of convergence in the Anolis landscape can be measured as c = 22, the 
number of shifts toward adaptive peaks occupied by multiple lineages, and c/k = 22/29 = 
0.76, the proportion of shifts that are convergent.  In morphospace, species attracted to 
the same adaptive peak tended to cluster closely about their estimated adaptive optima 
(Fig. 2), as is expected for a radiation in which lineages diversify on highly similar 
macroevolutionary adaptive landscapes. This correspondence is particularly strong for 
pPC axes 1-3, which together explain the vast majority of the variation in our data (85%; 
Table S1). 

The replicated adaptive radiation hypothesis predicts that allopatric lineages 
diversifying in similar ecological settings will evolve to occupy similar adaptive peaks. 
Thus, for convergent peaks in our final model, we asked whether convergence involved 
lineages from multiple islands. In the analysis based on the MCC phylogeny, seven of 
eight convergent peaks attracted lineages from multiple islands (Table 1; across 
phylogenies, this was true for 94% of convergent adaptive peaks, and all exceptions 
occurred on the large islands of Cuba and Hispaniola, where such lineages may have 
converged to the same peak while allopatric).   

We also noted that while some non-convergent adaptive peaks contained species 
from multiple islands, the majority (five of seven) were endemic to a single island. The 
two “unique” lineages occupying multiple islands arose early according to our model, 
and colonized other islands without undergoing a peak shift (Fig. 2). Endemic unique 
lineages arose exclusively on the largest islands, Cuba and Hispaniola, in the model 
estimated for the MCC tree (this was also true for 96% of endemic unique lineages across 
phylogenies).  

To test whether adaptation to unique peaks only on the larger islands may be 
attributed to the “area effect” from adaptive radiation theory (1), we conducted a 
phylogenetic randomization test. Holding the remainder of the parameters of our 
estimated model constant (i.e., phylogenetic topology, species island assignment, 
numbers of convergent and non-convergent peak shifts, numbers of convergent and non-
convergent adaptive peaks, and number of shifts per convergent peak), we randomized 
the phylogenetic placement of peak shifts 100 times, and recorded the numbers of 
endemic unique lineages for each island. In this way we generated distributions of the 
expected number of endemic unique lineages for each island, given its evolutionary 
diversity; the “area effect” predicts that occupation of novel peaks is a function of 
evolutionary diversity (1), which is greater on larger islands in both anoles and other 
organisms (14, 30, 31). By comparing our empirical observations of the numbers of 
unique lineages on each island to these distributions, we confirmed that the tendency for 
unique anoles to be found only on large islands matches the predictions of the area effect 
(Fig. S3). 



 
 

8 
 

 
4d. Estimates of the Anolis landscape across phylogenies  

Estimates of convergence on the macroevolutionary landscape were similar across 
sampled trees from the Bayesian posterior distribution of Anolis phylogenies (Table 1). 
Topological placement of adaptive peak shifts varied among phylogenies, although in 
general, groups of species tended to be attracted to peaks of similar composition across 
the posterior sample of trees. Because the topologies of alternative trees may differ, it is 
not straightforward to compare the topological details of peak shift placement across 
trees. Instead, we used a network approach to illustrate the major features of peak 
occupancy over our set of phylogenies. We constructed a graph with edges between 
species weighted proportional to the number of phylogenies in which they were attracted 
to the same adaptive peak (no edge is drawn between species that never shared a peak). 
We plotted this graph as a co-occurrence network (Fig. S4) with weighted edges. We 
used a Kamada Kawai force-based algorithm to aid in plotting this network such that 
species most frequently co-occupying adaptive peaks tend to be plotted near one another. 
We colored species according to traditional ecomorph assignment (although these 
assignments played no role in the estimation of Hansen models by SURFACE) to 
heuristically assess whether species classically considered as belonging to the same 
ecomorph also tended to occupy the same adaptive peaks. In general, members of the 
same ecomorph classes were attracted toward the same adaptive peaks in the fitted 
Hansen model (Fig. S4). 

 
4e. Testing for exceptional convergence 

The macroevolutionary landscape for Anolis thus appears to show numerous 
instances of convergence, but it is necessary to test whether the extent of convergence 
(i.e., c, the number of convergent shifts) is greater than expected by chance. Some 
convergence is expected by chance in a large radiation (34), and while the null 
distribution of c is unknown and will vary among data sets, we can obtain an appropriate 
null distribution using simulations under a model that lacks convergent adaptive peak 
shifts. We used two classes of null model, one accounting for the general tempo of trait 
evolution, and the other incorporating non-convergent adaptive peak shifts. All null 
model simulation analyses were carried out on the MCC phylogenetic tree and compared 
to the corresponding analysis of anole data.  

First, we simulated 99 null data sets on the MCC tree using the trait-specific 
model described in Materials and Methods, Section 2. We ran the SURFACE algorithm 
on each of these data sets as we did for the anole data, and extracted the measures of the 
extent of convergence. Both the number (c = 22, P = 0.01) and proportion of convergent 
adaptive peak shifts (c/k = 0.76, P = 0.01) in anoles greatly exceeded the null expectation 
(Fig. 1B). The number and proportion of convergent peak shifts in Anolis also exceeded 
expectations when we repeated this analysis using 99 data sets simulated under each of 
the BM, EB, TM, and LD models (Fig. S5). 

These null models do not include adaptive peak shifts in the generating process, 
and the model recovered by the forward phase of SURFACE included more peak shifts in 
Anolis than it did for these simulated data sets (P = 0.01). To account for the possibility 
that the large number of convergent shifts c was due simply to the large number of total 
shifts k, we analyzed data simulated under a generating model that included adaptive 
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peak shifts. We used the Hansen model from the final iteration of the forward phase of 
the analysis, preserving all features except for the positions of the optima. We calculated 
the mean and variance of the k optima estimated for each trait axis, and for each null 
model simulation we sampled new optima for each adaptive peak from the corresponding 
normal distribution. These null models thus preserve the values of σ2 and α and the 
number and placement of peak shifts, but break up any tendency of optima to cluster in 
trait space beyond what is expected by chance. We used 99 such non-convergent null 
Hansen models to simulate trait data, and analyzed each data set with SURFACE. This 
analysis confirmed that the number and proportion of convergent adaptive peak shifts in 
the anole data were exceptionally high even when the presence of peak shifts was 
accounted for (P = 0.02 for both c and c/k; Fig. S5).  

Finally, to evaluate whether the identified convergent adaptive peak shifts could 
explain the exceptional among-island faunal similarity in Greater Antillean Anolis, we 
compared our empirical estimate of among-island similarity (NND, from Materials and 
Methods, Section 3) to two additional “null” distributions. We generated the first null 
distribution from 999 data sets simulated using the non-convergent Hansen model 
described above, accounting for any tendency of peak shifts per se to result in more 
similarity than expected under the models already analyzed (BM, EB, TM, and LD). We 
confirmed that NND for anoles was exceptional compared to data generated under a non-
convergent Hansen model (P = 0.002; Fig. S1). To obtain the second null distribution, we 
simulated 999 data sets using the final, convergent Hansen model estimated for our 
empirical data. Compared to this distribution, the empirical NND was not exceptional (P 
= 0.160; Fig. S1), indicating that our model of the macroevolutionary adaptive landscape 
can explain the among-island faunal similarity of Greater Antillean Anolis.   

 
5. Model Adequacy, Uncertainty, and Sensitivity Testing 
 
5a. Testing sensitivity to phylogenetic marker choice 

We conducted all comparative analyses using mitochondrial DNA (mtDNA) 
phylogenies from Mahler et al. (17), which represent the most taxonomically complete 
estimates of phylogeny from a single type of data presently available for Greater 
Antillean anoles. However, phylogenetic data for 46 nuclear markers are also available 
for 61 species from the Greater Antilles from the analysis of Alföldi et al. (36). A key 
finding of that study was that phylogenetic analysis of nuclear DNA corroborates 
previous analyses based on mitochondrial DNA, a finding that we confirm applies to the 
relationships of the 61 species shared in the Mahler et al. (17) and Alföldi et al. (36) 
analyses. For this taxon set, the topology presented in Alföldi et al. differs from the MCC 
topology of Mahler et al. by only 13 nearest-neighbor interchanges, and the monophyly 
of all independently evolved traditional ecomorph lineages is supported in both trees.  

The 61-species nuclear DNA sample is insufficient for testing for convergence 
among entire island radiations both because it is missing ecomorphologically distinct 
lineages (e.g., Anolis occultus, A. sheplani and A. placidus, A. vermiculatus, the A. 
equestris clade), and because SURFACE convergence parameter estimates are unlikely to 
be meaningful with highly incomplete species sampling (20). However, we can test 
whether the relatively minor differences between nuclear and mtDNA phylogeny 
estimates are likely to influence the results of tests for convergent evolution – i.e., 
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whether best-fit models of convergent trait evolution differ fundamentally when 
estimated using nuclear DNA versus mtDNA phylogenies. 

To determine whether nuclear and mtDNA phylogenies yield comparable 
convergence parameter estimates for Anolis, we conducted analyses on matching nuclear 
DNA and mtDNA phylogenies, pruned to contain only the 61 species shared by both. We 
analyzed the published Anolis phylogeny of Alföldi et al. (36), which was estimated 
using maximum likelihood analysis (GTR + gamma models, partitioned by locus) of a 
19,987 bp alignment representing 46 nuclear loci for 93 species (91 Anolis, plus two 
outgroups). We estimated relative divergence times for this tree using RelTime (41). 
Branch lengths were estimated from the Alföldi et al. alignment (considering all sites 
with 75% or greater coverage), assuming a GTR + gamma substitution model, using the 
local clocks method with no merging of clock rates (this was the best-fit model). This 
chronogram was then pruned to include only the 61 species also present in the mtDNA 
phylogenies and rescaled to a root age of 50 MY. 

We prepared analogous mtDNA chronograms from the 100-tree posterior sample 
of trees used for our main analyses. We pruned each of these 100-species chronograms to 
61 species (removing species not in the nuclear tree), and rescaled it to 50 MY. 

Next, for each tree, we phylogenetically prepared our morphological data (using 
the tree to phylogenetically size-correct all shape traits and conduct a phylogenetic PCA; 
trait loadings for these axes closely resembled those described in our main analyses), and 
analyzed the first four pPC axes. From the final model from each SURFACE analysis, we 
recorded the number of adaptive peak shifts, the total number of inferred adaptive peaks, 
the number of convergent adaptive peak shifts, and the number of convergent adaptive 
peaks.  

The macroevolutionary parameters estimated for the 61-species nuclear data set 
are similar to those estimated using mtDNA (Fig. S6). All fall within the range of 
parameters estimated for the 100-tree posterior sample of mtDNA trees (differences all 
non-significant). Thus, despite the fact that sampling of nuclear DNA data is presently 
limited for Anolis, estimates of the evolutionary process obtained using mitochondrial 
phylogenetic data are concordant with those inferred from nuclear data. 

 
5b. Assessing uncertainty in model estimation 

We conducted two additional sets of analyses to assess whether uncertainty in 
stepwise model estimation has affected our conclusions about the macroevolutionary 
landscape in anoles. We first assessed the robustness of model selection at each step of 
the SURFACE algorithm, and then tested whether allowing the algorithm to explore 
alternative pathways to estimating a convergent landscape yielded superior and 
fundamentally different models. 

Recent work has shown that Akaike’s Information Criterion may lead to high 
error rates when used as a criterion for model selection in phylogenetic comparative 
analyses (42). To evaluate whether SURFACE had a tendency to accept new models with 
low statistical support, we conducted phylogenetic Monte Carlo simulations using the 
‘pmc’ R package (42). At each iteration, we simulated 99 data sets under each of the 
current and previous Hansen models, then calculated statistical significance and power 
using log-likelihood differences added across traits. During the forward phase, new 
models were consistently a statistical improvement over preceding models (all p ≤ 0.06), 
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and there was high power to support a more complex true model (0.94-1.0). We then 
conducted simulations for the backward phase, and found that aside from the final 
iteration (P = 0.14), all steps of this phase led to statistically significant improvements (P 
= 0.01) (note that both models compared during the final iteration strongly supported 
exceptional levels of convergence among island radiations of anoles; Table S4). Power to 
detect a model with more adaptive peak collapses was variable but generally lower 
during the backward phase (0.18-1.0), suggesting that the algorithm is at times 
conservative at identifying convergence during individual steps of the backward phase. 
These simulations indicate that AICc is effective at informing model choice during the 
steps of our analysis. 

We then investigated the effect of algorithm path-dependence on our results. A 
potential drawback of stepwise model selection is that model choice during early steps 
affects the availability of models for comparison during subsequent steps; in some cases, 
this may preclude consideration of well-supported models. However, it is possible to 
relax path-dependence in model selection by allowing random selection from a candidate 
set of well-supported models at each step, rather than deterministically selecting the best 
model. By repeatedly analyzing a data set using such relaxed selection criteria, we are 
able to generate a set of model estimates with reduced path-dependence for comparison.  

To assess whether support for our final model was influenced by path-dependence 
in the estimation procedure, we repeated our stepwise analysis 100 times using the MCC 
Anolis phylogeny, using an “alternative chains” approach. At each step, we identified all 
candidate models that were within 5 AICc units of the best model and met the ΔAICc < 
ΔAICc* criterion, and chose the position of the peak shift for that step by randomly 
selecting a model from this candidate set. The 100 resulting final models varied 
considerably in support (Fig. S7). Allowing selection of relatively poorly supported 
models at various steps led many runs to return comparatively poor final models, but 
many returned models with roughly equivalent, or even slightly better, AICc support 
compared to our standard final model.  

We investigated whether macroevolutionary parameter estimates for well-
supported alternative chains models differ from those estimated for our standard 
SURFACE model. For comparison, we defined a credible set containing all final models 
with AICc scores within 10 units of the standard SURFACE model. Twenty-six of the 
100 alternative chains models met this criterion, including all models that performed 
better than the standard SURFACE model.  

All well-supported alternative chains models were highly similar to the standard 
model, and all recovered nearly identical patterns of convergence for Greater Antillean 
Anolis (Table S5). Topological details of peak shift placement were also highly similar 
between the standard and credible alternative chains models. Nearly all branches found 
together on the same adaptive peak in the standard model were also found together in all 
alternative chains models (mean proportion of identical cells in pairwise peak co-
occurrence matrix for all branches = 0.98; range = [0.96,1.0]). To illustrate using an 
example, we present the topological history of adaptive peak shifts and the positions of 
species and adaptive peaks in morphospace for the alternative chains model with the 
lowest AICc score out of all 100 such models estimated (Fig. S8). This model is nearly 
identical to the standard model, although it identifies a single additional instance of 
among-island convergence. 
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5c. Comparison of stepwise adaptive peak-shift and stepwise rate-shift models 

The Hansen model estimated by SURFACE was strongly favored over a variety 
of simpler models of trait evolution, including Brownian motion, several models with 
declining evolutionary rate, and a single-peak Ornstein-Uhlenbeck model (Fig. S2). 
Evolutionary processes are unlikely to be homogeneous across entire radiations, and the 
complexity of multi-peak Hansen models and the exploration of model space could 
predispose our analysis to finding a model that fits the trait data well despite not 
representing the evolutionary process well. Thus, we compared our Hansen model to a 
model returned by a similar stepwise algorithm, traitMEDUSA (24), which uses stepwise 
AICc to fit models of trait evolution with multiple Brownian rate shifts, rather than 
multiple adaptive peak shifts. 

We input our trait data and tree to traitMEDUSA, and allowed it to add rate shifts 
until the AICc stopped improving. We modified the AICc calculation in traitMEDUSA to 
be consistent with the way SURFACE calculates AICc. Namely, each new rate shift adds 
two parameters: a "shift" parameter and a rate parameter representing the rate multiplier 
applied to all traits. traitMEDUSA added a total of 15 Brownian rate shifts before the 
AICc stopped improving (Fig. S9). The resulting model fit better than any of the simple 
models (single peak OU, BM, EB, Time or Lineage Diversity models), but not nearly as 
well as the models returned by the forward and backward phases of SURFACE (Fig. S2). 
Thus, a paradigm of shifts between adaptive peaks (with constant rates of Brownian 
evolution and adaptation) provides a better fit to the anole data than one of shifts in the 
rate of stochastic evolution. 
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Fig. S1. 
Among-island faunal similarity for Greater Antillean Anolis is greater than expected 
under several null models of evolution. We simulated under seven fitted models, 
including trait-specific, Brownian motion, early burst, time, lineage diversity, and Hansen 
models. We simulated under two Hansen models, both using parameters estimated for our 
empirical data by the SURFACE algorithm. The first Hansen model features peak shifts 
on the adaptive landscape, but lacks explicit convergence; the second (bottom panel) is 
parameterized using the final model that includes explicit convergence to shared adaptive 
peaks. The non-significance of the second Hansen model indicates that our model of 
convergent adaptive peak shifts can account for the observed among-island faunal 
similarity. Results for the trait-specific model were also depicted in Fig. 1A, but are 
shown here for comparison. Histograms represent simulated null distributions for the 
among-island nearest neighbor similarity statistic, with red lines indicating the empirical 
value. P-values reflect the probabilities of obtaining the empirical result under each null 
simulation model. 
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Fig. S2 
Sequence of Hansen model improvement as the SURFACE algorithm proceeds through 
‘forward’ and ‘backward’ stepwise phases for the Greater Antillean Anolis data set. 
Starting in the upper left portion of the plot, the black line traces change in model support 
(AICc) as new adaptive peak shifts are added to the model during the ‘forward’ phase, 
and then as similar peaks are collapsed during the ‘backward’ phase. Dashed lines 
indicate AICc values for the initial single-peak Hansen model, the model estimated at the 
end of the ‘forward’ phase, and the final model (all in red), as well as five alternative 
models that do not feature adaptive peaks (in blue; see text for description). Early in this 
sequence (by the addition of the 7th distinct peak), the algorithm identifies adaptive 
landscape models that outperform all models lacking macroevolutionary peak shifts. The 
final model selected is characterized by extensive convergence on the adaptive landscape. 
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Fig. S3 
The numbers of endemic unique adaptive peaks observed on each island in Greater 
Antillean Anolis (red lines) match expectations of the “area effect” from adaptive 
radiation theory (histograms). In Anolis, five endemic “unique” peaks were observed – 
three on Cuba, two on Hispaniola, and zero on the smaller islands of Jamaica and Puerto 
Rico. Histograms represent distributions of the expected number of endemic unique 
adaptive peaks on each island given its evolutionary diversity, and assuming that shifts to 
five unique peaks were phylogenetically random. The four Greater Antilles are illustrated 
to scale in each panel, with the corresponding island in red. 
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Fig. S4 
Adaptive peak associations estimated from ecomorphology data by SURFACE are 
broadly concordant with Anolis ecomorph classifications. Edges in this graph connect 
pairs of species (nodes) if they occupy the same adaptive peak in any of 100 sampled 
Bayesian phylogenies, with edge thickness proportional to the number of phylogenies in 
which the pair shares an adaptive peak; nodes are arranged to illustrate peak co-
occupation patterns, but their plot coordinates are arbitrary. Species are colored according 
to the traditional ecomorph classification presented in reference (14) (pp. 411-420) to 
show that members of the same ecomorph class tend to be attracted to the same adaptive 
peak. Note that traditional ecomorph classifications played no role in either the 
estimation of adaptive peaks or the generation of the graph. Also, because Hansen model 
adaptive peaks do not correspond directly to ecomorph classes, the colors in this figure 
do not correspond directly to those of Fig. 2. 
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Fig. S5 
Convergent adaptive peak shifts (c) occurred more frequently in Greater Antillean Anolis 
than expected under several null models of evolution. We simulated under six fitted 
models, including trait-specific, Brownian motion, early burst, time, lineage diversity, 
and Hansen models. Results for the trait-specific model were also depicted in Fig. 1B, but 
are shown here for comparison. Histograms represent simulated null distributions for the 
number of convergent peak shifts, with red lines indicating the empirical value. P-values 
reflect the probabilities of obtaining the empirical result under each null simulation 
model. 
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Fig. S6 
Final Hansen model parameters estimated for 61 species of Greater Antillean Anolis 
using a 46 locus nuclear phylogeny (red lines) versus a mtDNA phylogeny (gray 
histograms). Histograms represent parameter estimates from analyses conducted on the 
100-tree mtDNA posterior sample described above. For the nuclear analysis, parameters 
describing the shape of macroevolutionary adaptive landscape (number of adaptive 
peaks), as well as the specific history of convergent evolution on this landscape (numbers 
of adaptive peak shifts, convergent adaptive peak shifts, and convergent adaptive peaks) 
lie within the range of estimates obtained for trees across the mtDNA posterior 
distribution. Note that because these analyses exclude many distinctive lineages, we 
expect them to recover a highly incomplete history of adaptive peak shifts and 
convergence for Greater Antillean Anolis; nonetheless, they reveal that the estimation of 
complex Hansen models is robust to phylogenetic marker choice. 
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Fig. S7 
Sequence of Hansen model improvement for the standard SURFACE analysis of Greater 
Antillean Anolis data (red line), and for 100 “alternative chains” analyses of the same 
data (gray lines). Starting in the upper left portion of the plot, lines trace improvement in 
model support (measured using AICc; dashed line indicates value for the starting model) 
as new adaptive peaks are added to the model during the ‘forward’ phase, and then as 
similar peaks are collapsed during the ‘backward’ phase. 
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Fig. S8 
Estimate of the Greater Antillean Anolis macroevolutionary adaptive landscape for the 
“alternative chains” model with the lowest AICc score (out of 100 runs of the “alternative 
chains” SURFACE algorithm). This model is nearly identical to the model returned by 
the standard SURFACE algorithm (compare to Fig. 2). It contains the same number of 
adaptive peak shifts (k=29), but identifies one additional instance of among-island 
convergence (adaptive peak denoted in pink; convergence is among twig-dwelling anoles 
from Hispaniola and Cuba). Colors and shapes are as in Fig. 2. 
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Fig. S9 
Comparison of sequences of model improvement for the stepwise SURFACE analysis of 
Greater Antillean Anolis data (black line), and a stepwise traitMEDUSA analysis of the 
same data (red line). Starting in the upper left portion of the plot, lines trace improvement 
in model support (measured using AICc) with each additional step in the algorithm. The 
simpler traitMEDUSA models outperform SURFACE models for the sequential addition 
of 15 shifts, but cease to improve further as additional shifts are added. Both the 
‘forward’ and ‘backward’ phase SURFACE models strongly outperform the best 
estimated traitMEDUSA model. 
 
  



 
 

22 
 

Table S1 (separate file). 
Traits, loadings, and variance explained for the axes of a phylogenetic principal 
component analysis (pPCA) of 11 ecomorphological traits using the MCC chronogram 
from the Bayesian posterior distribution of phylogenetic trees. pPC axes 1-4 explained 
93% of trait variation, and were strongly correlated with our raw variables. All analyses 
were conducted using a morphospace defined by these four axes.   
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Table S2 (separate file). 
Principal component scores for the axes of a pPCA of 11 ecomorphological traits using 
the MCC chronogram from the Bayesian posterior distribution of phylogenetic trees. pPC 
axes 1-4 explained 93% of trait variation, and were strongly correlated with our raw 
variables. All analyses were conducted using a morphospace defined by these four axes.   
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Table S3. 
Comparison of the fit of four models of continuous trait evolution for each pPC axis in 
the empirical morphospace for Greater Antillean Anolis, using the MCC tree. Models 
include Brownian motion (BM), early burst (EB), time (TM), and lineage diversity (LD). 
For all models, we report the number of parameters (np), the starting rate of stochastic 
evolution (σ2

0), the log likelihood score, and a measure of relative model fit (∆AICc). For 
the EB model, we also report the exponential rate decline parameter (r), and for the TM 
and LD models, we report linear rate decline parameters (Ψ) corresponding to time or the 
accumulated diversity of sympatric lineages, respectively. For the BM model, there is no 
rate decline, and σ2

0 is the best-fit evolutionary rate for the entire radiation. For each trait 
axis, the lowest ∆AICc score (0 in each case; indicated in bold) represents the best-fit 
model, and this model was used to simulate null trait axes. Parameters and model 
selection results presented here for the MCC tree are representative of those for the 100 
trees from the posterior sample, although in some cases, different models were favored 
for a given trait axis in different trees (data available upon request). This variation was 
minor, and did not influence any results.   
 
 

Trait Model np σ2
0 Ψ r log(L) ∆AICc 

pPC 1 BM 2 3.3E-03 - - -13.7 19.0 
EB 3 3.2E-02 - -6.8E-02 -5.2 4.2 
TM 3 7.3E-03 -1.4E-04 - -3.1 0.0 
LD 3 4.7E-03 -8.3E-05 - -8.0 9.7 

pPC 2 BM 2 2.7E-03 - - -4.7 10.1 
EB 3 4.6E-03 - -1.4E-02 -4.3 11.5 
TM 3 4.7E-03 -6.4E-05 - -3.6 10.1 
LD 3 4.3E-03 -8.4E-05 - 1.4 0.0 

pPC 3 BM 2 1.0E-03 - - 45.6 0.7 
EB 3 2.0E-03 - -1.9E-02 46.3 1.4 
TM 3 1.6E-03 -2.0E-05 - 46.5 1.1 
LD 3 1.3E-03 -1.7E-05 - 47.0 0.0 

pPC 4 BM 2 6.2E-04 - - 69.1 0.9 
EB 3 1.5E-03 - -2.5E-02 70.5 0.0 
TM 3 9.5E-04 -1.1E-05 - 70.2   0.6 
LD 3 7.7E-04 -8.3E-06 - 70.5   0.1 
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Table S4. 
Convergence parameters for models estimated during the last two steps of the SURFACE 
algorithm. The final model was favored by 7.51 AICc units, but data simulated under the 
two models exhibited moderate overlap (P = 0.13). However, the two models yield nearly 
identical estimates of evolution on the macroevolutionary adaptive landscape, and both 
show support for exceptional convergence among Greater Antillean Anolis radiations.   
 
 Penultimate 

model 
Final 
model 

Adaptive peak shifts 29 29 
Convergent adaptive peak shifts 21 22 
Adaptive peaks 16 15 
Convergent adaptive peaks 8 8 
Convergence fraction (convergent peak 
shifts / total peak shifts) 

0.72 0.76 

Average number of lineages converging 
to each shared adaptive peak 

2.6 2.8 

Fraction of convergent peaks with 
lineages from multiple islands 

0.88 0.88 
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Table S5. 
Convergence parameters for the final Hansen model estimated by the standard stepwise 
algorithm, and for a set of well-supported models from 100 runs that explore alternative 
chains (included models are all within 10 AICc units of the standard model). Analyses 
were conducted using the MCC Anolis phylogeny. For the 26 alternative chains models, 
we present mean parameter values, with ranges in parentheses.   
 
 Standard 

model 
Alternative chains 
credible model set 

(26 models) 
Adaptive peak shifts 29 29.1 (29-30) 
Convergent adaptive peak shifts 22 22.8 (22-24) 
Adaptive peaks 15 15.1 (15-16) 
Convergent adaptive peaks 8 8.8 (8-10) 
Convergence fraction (convergent peak 
shifts / total peak shifts) 

0.76 0.78 (0.76-0.80) 

Average number of lineages converging 
to each shared adaptive peak 

2.8 2.6 (2.4-2.8) 

Fraction of convergent peaks with 
lineages from multiple islands 

0.88 0.95 (0.88-1.0) 
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