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Theoretical quantitative genetics provides a framework for reconstructing past selection and predicting future patterns of phe-

notypic differentiation. However, the usefulness of the equations of quantitative genetics for evolutionary inference relies on

the evolutionary stability of the additive genetic variance–covariance matrix (G matrix). A fruitful new approach for exploring

the evolutionary dynamics of G involves the use of individual-based computer simulations. Previous studies have focused on the

evolution of the eigenstructure of G. An alternative approach employed in this paper uses the multivariate response-to-selection

equation to evaluate the stability of G. In this approach, I measure similarity by the correlation between response-to-selection

vectors due to random selection gradients. I analyze the dynamics of G under several conditions of correlational mutation and

selection. As found in a previous study, the eigenstructure of G is stabilized by correlational mutation and selection. However, over

broad conditions, instability of G did not result in a decreased consistency of the response to selection. I also analyze the stability

of G when the correlation coefficients of correlational mutation and selection and the effective population size change through

time. To my knowledge, no prior study has used computer simulations to investigate the stability of G when correlational mutation

and selection fluctuate. Under these conditions, the eigenstructure of G is unstable under some simulation conditions. Different

results are obtained if G matrix stability is assessed by eigenanalysis or by the response to random selection gradients. In this case,

the response to selection is most consistent when certain aspects of the eigenstructure of G are least stable and vice versa.

KEY WORDS: Evolutionary constraint, genetic constraint, genetic correlation, genetic variance–covariance matrix, quantitative

genetics.

The additive genetic variance–covariance matrix, or G matrix, has

become an important tool in predicting the course of phenotypic

evolution under natural selection and genetic drift (Lande and

Arnold 1983; Arnold 1992; Arnold et al. 2001). G is a symmet-

rical matrix in which the diagonal elements are additive genetic

variances for traits and the off-diagonal elements are additive ge-

netic covariances (Lynch and Walsh 1998). Quantitative genetic

theory comprises, at its base, a set of equations that use this matrix

to describe the course and pattern of phenotypic evolution (Lande

1979; Lande and Arnold 1983; Arnold et al. 2001). Central among

these equations is the multivariate version of the classic breeder’s

equation (Lande 1979), which provides the single-generation re-

sponse to selection,

1z = Gb, (1)

in which 1z is a vector of single-generation changes in popu-

lation means for traits and b is a vector of the partial regres-

sion coefficients of fitness on phenotype (i.e., the selection gra-

dient; Lande 1979; Lande and Arnold 1983). As the response

to selection depends both on the genetic variation for single

traits and on the genetic correlations between them, the G ma-

trix plays a central role in determining the course of adaptive

evolution.

Lande (1979) also proposed that the net selection gradient

(bnet) responsible for phenotypic change over many generations

could be obtained by summing equation (1) from time 0 to time

t, such that

bnet = G−1(zt − z0), (2)
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in which zt is a vector of trait means at time t. In addition, if the

populations or species had phenotypically diverged under drift,

then the covariance matrix for species mean trait values, the D

matrix, has an expectation proportional to the time average of G,

D = (t/Ne)G, (3)

in which Ne is the effective population size. An implicit assump-

tion of equation (2) and a practical necessity of equation (3) is that

G is stable over the evolutionary time scale of interest. As such,

successful retrospective selection analysis (eq. 2) and prospective

prediction of diversification (eq. 3) depend on the evolutionary

dynamics of G (Turelli 1988; Arnold 1992; Arnold et al. 2001).

Theoretical considerations provide no concrete predictions

about the long-term dynamics of G and consequently the stability

of G is fundamentally an empirical question (Barton and Turelli

1987; Turelli 1988; Shaw et al. 1995; Roff 2000). Although there

is accumulating evidence that G may be conserved, particularly

at low taxonomic levels (Roff 1997; Roff and Mousseau 1999;

Steppan et al. 2002; Bégin and Roff 2004; Revell et al. 2007),

theoretical investigations are needed to explore the evolutionary

dynamics of G. Because the dynamics of G are not particularly

amenable to analytic exploration (see Jones et al. 2003), several

authors have made successful use of individual-based, stochastic

computer simulations to examine the shape and stability of G

under various conditions of selection, mutation, and genetic drift

(Bürger et al. 1989; Bürger and Lande 1994; Reeve 2000; Jones

et al. 2003, 2004).

In the most thorough such study to date, Jones et al. (2003)

showed that the stability of some aspects of the eigenstructure

of G is increased by correlational natural selection and corre-

lated effects of pleiotropic mutation. In particular, the stability of

the orientation of the primary eigenvector of G is increased by

correlational mutation or selection or both. They also note, how-

ever, that under several mutation–selection parameter combina-

tions (henceforward “mutation–selection scenarios”), instability

in the orientation of the primary eigenvector of G is associated

with low matrix eccentricity and thus is probably inconsequential

to evolution by natural selection (Jones et al. 2003; p. 1758). This

is because evolution is not constrained by a matrix that is not ec-

centric and thus matrix orientation is irrelevant to evolution. They

also show that stability in the magnitude of the elements of G is

lower for small effective population size (Jones et al. 2003).

In this paper, I use eigenanalysis and the response to random

selection vectors to measure stability and to explore the condi-

tions under which G can be considered to be stable. The latter

approach, which is adapted from the random skewers method of

Cheverud et al. (1983; Cheverud 1996), measures the evolutionary

dynamics of G in terms of the correlation between the response

to random selection vectors. This measure of the dynamic of G

differs from the eigenanalysis in which the stability of G is mea-

sured directly. As such, I will henceforward refer to the random

skewers approach as measuring the evolutionary consistency of

G. This is because random skewers measures the consistency of

the expected response to selection given the same selection gradi-

ent imposed on two different G matrices. As this method uses the

quantitative genetic equation (1), it may be useful in diagnosing

differences between G matrices that are likely to influence the

response to natural selection.

I also simulate previously unexplored conditions under which

G may be more severely destabilized. In particular, I explore the

degree to which the stability and evolutionary consistency of G are

compromised by fluctuating coefficients of correlational selection

and pleiotropic mutation, and by fluctuating effective population

size. To my knowledge, no prior simulation study has investigated

the consequences of fluctuating correlational selection and muta-

tion on the evolution of the G matrix.

In summary, therefore, this study uses different methods to:

(1) evaluate the evolutionary dynamics of G under various condi-

tions when correlational selection, correlational pleiotropic muta-

tion, and effective population size are constant over time; and (2)

evaluate the evolutionary dynamics of G when correlational se-

lection and mutation, and effective population size fluctuate over

time.

Methods
SIMULATING THE EVOLUTION OF G

The simulation model used in this study is a Monte Carlo simula-

tion with all individuals modeled and is similar to that employed

by Jones et al. (2003, 2004), and in a univariate context by Bürger

et al. (1989) and Bürger and Lande (1994). In this model, two

traits were determined by n = 50 unlinked pleiotropic loci. A

mutation at a locus produced a new allele with new effects on

both traits. The new effects were drawn from a bivariate normal

distribution with mean [0, 0], variances a1
2 = a2

2 = 0.05, and

correlation rm. The new state at the locus was then determined by

adding new effects to the old. This corresponds to a continuum of

alleles mutation model (Crow and Kimura 1964; Kimura 1965). I

determined individual phenotypes by summing across all loci and

adding to both traits random normal environmental deviates with

mean [0, 0], variances E11 = E22 = 1.0, and correlation re = 0.

I simulated a diploid, hermaphroditic, sexually reproducing

population with discrete generations and population size N, which,

for most simulations, was held constant at N = 1000. I used a

slightly different life cycle than that employed by Jones et al.

(2003). The life cycle was as follows: (1) I calculated phenotype

and expected fitness for each adult; (2) I randomly mated the adults

with probability equivalent to their expected fitness—each mating

produced one offspring and having participated in one mating did
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not diminish the probability of mating again. This was repeated

until the population of progeny was equal to N. (3) I produced

offspring genotypes by independently assorting one random gene

copy from each parent at each locus into each offspring, which

corresponds to a model of no physical linkage among loci, and

simulated mutations as described above with a probability per

allele generation of m = 0.0002.

The main difference between the life cycle simulated in this

study and that of Jones et al. (2003) is that Jones et al. impose

mortality selection prior to reproduction, whereas I mated adults

with a probability determined by their fitness. For a subset of the

simulations presented in this study I also conducted the simulation

using prereproductive mortality selection (not shown). I found no

difference between the results in those cases. This should not be

surprising given that the probability of any mating pair is the prod-

uct of the fitness parameter of each mate (calculated as described

below). This makes the selection model used in this study equiv-

alent to multiplicative fecundity selection, which has been shown

elsewhere to be exactly analogous to the two-sex viability selec-

tion model used in Jones et al. (2003; Bodmer 1965; Hartl and

Clark 1989).

In addition, in Jones et al. (2003), the effective population

size Ne was larger than the population size N, whereas in my sim-

ulations Ne and N were equivalent. This circumvents the necessity

of complicated calculations to evaluate Ne given N.

I assigned expected fitness, W(z), to each individual accord-

ing to the bivariate Gaussian fitness function,

W (z) = exp

(

−
1

2
zTv−1z

)

, (4)

where z is a column vector of individual trait values (the super-

script T indicating that a transpose was taken), and v is a symmet-

rical two by two matrix describing the curvature and orientation of

the selection surface (Lande 1979). Following Jones et al. (2003,

2004), I set v11 = v22 = 49, which corresponds to a scenario of

weak stabilizing selection. The strength of correlational selection,

v12, was set equal to rv(v11v22)1/2, where rv is the correlation

coefficient of the fitness surface.

Each simulation run involved the initiation of the population

at genetic uniformity, followed by 10,000 generations of stabiliz-

ing selection, mutation, and drift, during which the starting pop-

ulation attained equilibrium conditions. This “burn-in” was then

followed by 2000 experimental generations during which values

for the elements of the additive genetic variance–covariance ma-

trix, three aspects of its eigenstructure (the size, 6; a measure of

the eccentricity, ε; and the orientation, w), as well as the pheno-

typic means for the traits were recorded in each generation. Size,

eccentricity, and orientation of G were calculated following the

methods described in Jones et al. (2003). Their specific calculation

is also described below.

I conducted two sets of experimental manipulations using

this design. The first set involved repeating the simulation condi-

tions of Jones et al. (2003), in which mutation, selection, and drift

were simulated for constant correlational selection and mutation

and constant population size. I repeated their simulations to an-

alyze the results using a response-to-selection vector correlation

method to assess evolutionary consistency (described below), and

to consider the results obtained using this method in the context

of those calculated when stability is evaluated directly by decom-

posing the eigenstructure of the matrix. For this analysis, I used

six different mutation–selection scenarios (following Jones et al.

2003). Although in this text I assign each scenario a letter in-

dicated in parentheses (e.g., scenario [a]), for clarity when the

scenarios are subsequently referenced I will provide both the let-

ter index and description of the scenario wherever possible (so

that the reader need not memorize the specific parameter combi-

nations of each scenario for which I conducted the simulations).

The six mutation–selection scenarios were as follows: (a) no cor-

relational selection or mutation (rv = 0, rm = 0); (b) correlational

selection with uncorrelated mutation (rv = 0.75, rm = 0); (c) cor-

relational mutation with uncorrelated selection (rv = 0, rm = 0.5);

(d) correlational selection and mutation (rv = 0.75, rm = 0.5); (e)

correlational selection and mutation with high values of the cor-

relation coefficients (rv = 0.9, rm = 0.9; Jones et al. 2003); and

(f ) correlational mutation and selection in which the correlation

coefficients have opposite signs (rv = 0.75, rm = −0.5). This final

scenario corresponds to one of antagonistic pleiotropic mutation,

in which a mutation with a beneficial or only mildly deleterious

effect on one trait has a severely deleterious effect on the other

trait. These simulation conditions explore a range of parameter

values for rv and rm, both of which are poorly known empirically.

I simulated each set of conditions with 20 runs.

The second set of manipulations involved simulating con-

ditions under which G might be severely destabilized. In these

simulations I manipulated the constancy of rv, rm, and N. I ini-

tiated rv at 0 and allowed rv to change over time as a random

walk, where rv(t + 1) was equal to rv(t) plus a deviate drawn

from a random normal distribution with mean 0 and variances

(g) s2(r) = 0.0001, (h) s2(r) = 0.001, (i) s2(r) = 0.01, and (j)

s2(r) = 0.1. These range from very slowly (g) to very rapidly

(j) changing rv. In a separate set of analyses, I initiated rm at

0 and allowed rm to change over time, in which rm(t + 1) was

equal to rm(t) plus a deviate drawn from a random normal distri-

bution with mean 0 and variances s2(r) as described above for rv

(mutation-selection scenarios [k] through [n]). Necessarily, −1 ≤
r ≤ 1, so if a correlation hit the boundary it was reflected by

an amount equivalent to that by which it would have otherwise

exceeded the bound. Example time series for r are provided in

Appendix A. Finally, I manipulated population size N. In these

simulations, run for conditions of no mutational and selectional
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correlation (as in mutation-selection scenario [a], above), N(0)

was initiated at N = 1000, after which N(t + 1) was equal to

N(t) plus a deviate drawn from a random normal distribution with

mean 0 and variances (o) s2(N) = 10, (p) s2(N) = 100, (q) s2(N)

= 1000, or (r) s2(N) = 10,000. The boundary conditions of 20 ≤
N ≤ 2000 were set to avoid population extinction as well as the

complete loss of genetic variation, and to increase computational

expediency. Reflection off the bound was performed as it was for

r in the previous simulations. Example time series for N are pro-

vided in Appendix B. Although rv, rm, or N were varied, other

parameters were held constant. In particular, rv (except in simu-

lations [g] through [j]) and rm (except in simulations [k] through

[n]) were held fixed at 0, and (except in simulations [o] through

[r]) N was held fixed at 1000, as in simulations (a) through (f ).

Each set of simulation conditions was explored with 20 replicate

runs.

MEASURING G-MATRIX STABILITY

I measured the evolutionary dynamics of G using two different

approaches. The first was the approach of eigenanalysis (e.g.,

Jones et al. 2003, 2004). I analyzed stability by evaluating the

constancy of various aspects of the eigenstructure of G: the matrix

size (6), calculated as the sum of the eigenvalues of G; an inverse

measure of the eccentricity (ε; henceforward for brevity referred

to as the eccentricity), calculated as the ratio of the smaller to

the larger eigenvalue of the matrix; and the orientation (w) of G,

calculated as the angle in degrees between the leading eigenvector

and the first trait axis. To evaluate the stability of G, I calculated the

mean cross-generational change in the elements of G, as well as in

the total size (16), the eccentricity (1ε), and the orientation (1w;

Jones et al. 2003). These were used as measures of the stability

of G and of important aspects of the eigenstructure of G. This

approach allowed direct measurement of the temporal stability of

G and its eigenstructure.

The second approach that I used to measure the evolution-

ary dynamics of G uses an adapted version of the random skew-

ers method (Cheverud et al. 1983; Cheverud 1996; Marroig and

Cheverud 2001). The random skewers method measures the simi-

larity between the two variance–covariance matrices by first mul-

tiplying each by a single randomly generated selection gradient.

For each matrix, the product is a vector that is equivalent to the

expected response to selection given the covariance matrix and

the random selection gradient. The vector correlation between the

response-to-selection vectors from each of the two matrices, av-

eraged across many random selection gradients, is a measure of

the similarity of the matrices (Cheverud 1996).

Specifically, for matrices G1 and G2, and m randomly gen-

erated selection vectors, b1 through bm, the random skewers cor-

relation (rs) is calculated as

rs =
1

m

m
∑

i=1

corr
(

G1bi , G2bi

)

, (5)

where corr denotes the calculation of a vector correlation

corr(G1bi , G2bi ) =
(G1bi )

T(G2bi )
√

[(G1bi )
T(G1bi )][(G2bi )

T(G2bi )]
. (6)

Elements of the random vectors were drawn from a random normal

distribution with mean 0.0 and variance 1.0. Generating random

vectors in this way results in a set of vectors whose orientations are

random and uniformly distributed (i.e., they are random vectors

from a unit circle). As before, superscriptT indicates that a trans-

pose is used. This calculation should be familiar as a standardized

vector dot product.

The random skewers correlation is a useful metric of similar-

ity because it uses the multivariate response-to-selection equation

(eq. 1), and thus provides a measure of G matrix resemblance in

terms of the expected similarity of the multivariate response to

natural selection. As the random skewers matrix correlation is a

measure of the consistency of the expected evolutionary responses

of two matrices to natural selection, and to distinguish it from the

direct measures of matrix stability, I henceforward refer to random

skewers as providing a measure of the evolutionary consistency

of G.

My modification of this approach, which I call “serial ran-

dom skewers,” measures the temporal evolutionary consistency

of G using the mathematics of the random skewers method. It

involves calculating the average arccosine of the random skewers

vector correlation across all possible time steps in each 2000-

generation run, and then averaging this result across runs. The

arccosine provides the angle between the response-to-selection

vectors (henceforward u is used to indicate the angle, in degrees,

between response-to-selection vectors, with subscripts or hats to

differentiate specific contrasts and averages; Fig. 1). u has the con-

venient interpretation of representing the angle, in degrees, over

which the response to selection is “bent” by substituting matrix 2

for matrix 1 or vice versa. Its average across all possible time steps

of length t is ū1t (e.g., for 2000 generations between t = 0 and t

= 2000 there are 2001 − 1t time steps of length t). I averaged

ū1t for 1t = 1 to 1t = 2000 across 20 replicate runs of each

simulation scenario. m = 100 random selection vectors were used

at each time step (see eq. 5). ū1t was thus evaluated as follows:

ū1t =
1

20 · (2001 − 1t)

20
∑

i=1

2001−1t
∑

j=1

arccos[rs(i, j)]. (7)

Obviously ū1t is calculated from both independent and noninde-

pendent observations, where nonindependence results both from

time-step overlap and from temporal autocorrelation of G. As

such, ū1t was used as a quantitative measure of evolutionary

consistency but not to assess whether significant differences in
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Figure 1. An illustration of the random skewers procedure. G ma-

trices are represented by ellipses GA and GB, for which orienta-

tion is determined by the primary eigenvector of G and length

and width are proportional to the square roots of the eigenvalues

of G. Each Gi is multiplied by the random selection vector, b. A

measure of matrix similarity is provided by the angle, u, between

the response-to-selection vectors, RA and RB. Note how RA and

RB are “bent” toward the primary eigenvectors of GA and GB, re-

spectively. Matrix similarity is evaluated as the mean value of the

angle, u, from many random selection vectors.

consistency were observed among different mutation–selection

scenarios. For that purpose a different measure of matrix consis-

tency was used (see below).

Interpretation of ū1t is straightforward. If ū1t is relatively

small compared to a null model, it indicates that the mean de-

viation from collinearity of the response to selection because of

the differences among G matrices sampled 1t generations apart

in time is small, and thus the evolutionary consistency of G is

high. In other words, if ū1t is small, then swapping G matrices

over the time interval 1t would be of little consequence to the

direction of the response to selection. By contrast, relatively large

ū1t implies that evolutionarily important differences between the

matrices exist (Fig. 1).

I also evaluated the significance of the differences in evolu-

tionary consistency among mutation–selection scenarios. Admit-

tedly, hypothesis testing in this context has some artificiality asso-

ciated with it—because we know a priori that our null hypothesis

is false (the data were generated under different simulation condi-

tions). Nonetheless, evaluating the significance of the difference

between simulation conditions can provide a reasonable indica-

tion of whether discernibly different evolutionary consequences

of the different simulation models are implied.

Because the means at each 1t (denoted as ū1t ) in the preced-

ing analysis were calculated from both independent (nonoverlap-

ping and between-run) and nonindependent (overlapping, within-

run) observations (see eq. 7, above), standard errors cannot be

estimated in the typical way. Thus, to facilitate hypothesis tests

of G matrix consistency, I also calculated u t,0, the angle, in de-

grees, between the response vectors to random selection gradients

at times t and t = 0, for each value of t > 0 and averaged across

the 20 replicates of each simulation scenario. Variance in u t ,0 was

calculated in the standard way across runs at each t > 0, which is

possible because at each time step only independent (between-run)

observations are used. I evaluate the significance of differences

in G matrix consistency among mutation–selection scenarios by

calculating the t-statistic at all time intervals as

tt (i, j) =
ūt,0(i) − ūt,0( j)

√

1
20

{

var[ut,0(i)] + var[ut,0( j)]
}

, (8)

where time is indicated in the subscript and the genetic scenarios

are shown in parentheses. tt(i,j) is expected to be distributed as a

t-statistic with df = 38. Genetic scenario (a: rv = rm = s2(rv) =
s2(rm) = s2(N) = 0, and N = 1000) was used as the null sce-

nario i in all analyses such that a positive value for the t-statistic

indicated that the alternative scenario promoted the evolutionary

consistency of G relative to its stability with constant correlational

mutation and selection equal to zero, and constant population size,

whereas a negative result indicated that the alternative mutation–

selection scenario decreased the consistency of G.

Although each value of the t-statistic was calculated from

a set of independent (between-run) observations, sequential val-

ues of t are highly serially autocorrelated, making the calculation

of specific P-values for the test very difficult. Consequently, I

present a temporal profile of the t-statistic for each comparison.

Only profiles that consistently exceed the significance threshold

of the two-tailed critical value from the t-distribution, t0.05(df =
38) = 2.02, are considered to indicate a significant difference in

consistency with respect to null scenario (a).

I also measured similarity in the relative magnitude of the

response to selection. Magnitudinal similarity, M, was measured

as the ratio of the lengths of the response-to-selection vectors, the

larger vector over the smaller. This ratio can also be expressed in

terms of the absolute value of a difference in logarithms,

M = exp

{

1

2

∣

∣

∣

∣

∣

ln

(

n
∑

i=1

1z2
1,i

)

− ln

(

n
∑

i=1

1z2
2,i

)
∣

∣

∣

∣

∣

}

. (9)

Here, 1z̄i, j is the jth of n elements of the response-to-selection

vector associated with the ith matrix. This metric measures the

standardized mean difference in the magnitude of the response to

selection produced by G because of the same random selection

vector. It was averaged across many random selection vectors and

many pairs of G matrices for each time interval. I calculated means

and conducted hypothesis testing of M as described for u, above.

u and M were used to assess the evolutionary dynamics of G

because, given two G matrices: (1) u provides a measure of the
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expected difference in the direction of the response to selection

induced by differences between matrices (Fig. 1); and (2) M pro-

vides a measure of the expected difference in the magnitude of

the response to selection induced by differences between matri-

ces. Thus u and M facilitate evaluating the potential evolutionary

importance of differences in G. We might consider differences

in G to be of greater potential evolutionary consequence, specifi-

cally in terms of the response-to-selection equation (eq. 1), if they

induce a large u or M. That is not to say that other changes in G

are biologically unimportant or uninteresting, but rather that those

associated with a large u or M are more likely to affect the effec-

tiveness of the evolutionary inferences based on the multivariate

response-to-selection equation (eq. 1).

Results
STABILITY OF G

The mean total size (6) and eccentricity (ε) of G differed substan-

tially among simulation conditions (Table 1). 6 was maximized

when correlational mutation and selection was aligned and high

[scenario (e: rv = 0.9, rm = 0.9); Table 1], and minimized when

the correlation coefficients of mutation and selection had opposite

sign (f : rv = 0.75, rm = −0.5). Mean ε was maximized (i.e., the

eccentricity was minimized) near ε = 0.75 when mutation and

selection were both uncorrelated ([a: rv = 0, rm = 0]; Table 1)

and when mutation and selection were both correlated but with

opposite sign ([f : rv = 0.75, rm = −0.5]; Table 1), and minimized

(eccentricity maximized) for high rv and rm (e).

The stability of 6 and ε (16 and 1ε) was similar for all

mutation–selection scenarios, whereas stability of w (1w) differed

considerably among simulation conditions. Stability of w was low

under scenarios (a: rv = 0, rm = 0) and (f : rv = 0.75, rm = −0.5),

but was improved by increased positive rv and rm (Table 1). Aside

from scenarios (a) and (f ), in which w fluctuates wildly and thus

for which the mean orientation is meaningless, the mean of w

varied little among simulation conditions (Table 1).

When matrix evolutionary consistency was evaluated in terms

of the predictability of the response to selection by serial random

skewers, slightly different findings were revealed (Fig. 2A). Evo-

lutionary consistency was not persistently significantly different

from the mutation–selection scenario (a: rv = 0, rm = 0; con-

stant, uncorrelated selection and mutation) in mutation–selection

scenarios (b: rv = 0.75, rm = 0), (c: rv = 0, rm = 0.5), and (f : rv =
0.75, rm = −0.5) (Fig. 2B). Consistency of the response to selec-

tion was mildly but significantly improved under the mutation–

selection scenario (d: rv = 0.75, rm = 0.5), and even more greatly

increased under strong correlational mutation and selection (i.e.,

ū1t is decreased; [e: rv = 0.9, rm = 0.9]; Figs. 2A, B).

Matrix consistency evaluated by similarity in the magni-

tude of the response to selection, M, was unaffected by the T
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G MATRIX STABILITY

Figure 2. Evolutionary consistency of G for constant mutational

and selectional correlation (rm and rv). (A) Mean angle in degrees,

ū∆t , between the response vectors to random selection vectors

(random skewers) applied to all pairs of G matrices over all time

intervals of each length, ∆t. The rate at which ū∆t increases with

∆t is a measure of the consistency of G. Larger ū∆t implies less

consistent G. (B) The t-statistic for u t,0, the angle between the re-

sponse vectors to random selection gradients at times t and t =

0, for each value of t > 0, across 20 replicate runs. Significantly

greater consistency than the null mutation-selection scenario (a)

is indicated if t consistently exceeds the horizontal dashed line at

t0.05(df = 38) = 2.02, and significant inconsistency relative to the

null scenario (a) is indicated when t < −t0.05(df = 38) = −2.02.

(C) Mean magnitudinal similarity, M, measured as the ratio of the

lengths of the response-to-selection vectors from random skewers,

the larger vector over the smaller, between all pairs of G matrices

over all time intervals, ∆t. (D) The t-statistic for Mt,0. N was invari-

ant at N = 1000, v11 = v22 = 49, a 1
2

= a 2
2

= 0.05, m = 0.0002,

and E11 = E22 = 1.0 for all simulations. Other parameters are listed

in the figure legend. See text for additional explanation.

mutation–selection scenario used in the simulation (Figs. 2C, D).

An equilibrium mean value of M for a large 1t of approximately

1.2 was approached asymptotically at similar rates by the different

mutation–selection scenarios (Fig. 2C).

In Figures 2A and C, it is important to note that for large

values of 1t many fewer comparisons were used to estimate ū1t

and M than for small 1t (only 20 for the largest 1t). Consequently,

less weight should be given to the extreme right sides of Figures

2A and C; however this does not affect Figures 2B and D for

which 20 comparisons (only one per run) are calculated at each

time-step.

INSTABILITY OF G

Under a fluctuating coefficient of correlational selection, an in-

crease in the rate of change of rv, s2(rv), was associated with a

decrease in the magnitude of the diagonal elements of G and thus

of the overall size of G (Table 2). The mean value of ε was low

(i.e., matrix eccentricity was high) for a slow rate of change of

rv, and high for high s2(rv) and s2(rv) = 0 . Mean w was rela-

tively unaffected (Table 2; compare (a) and (f ) vs. other scenarios

in Table 1). The stability of the total size (16) and eccentricity

(1ε) were unaffected by fluctuating rv; however, the stability of

G (measured by 1w) was highest under slowly changing rv and

lowest under unchanging or rapidly changing rv (Table 2).

For fluctuating correlational mutation, neither the diagonal

elements of G nor 6 were substantially affected. The mean value

of ε was lowest for slowly changing rm and highest for rapidly

changing rm or unchanging rm = 0. The mean orientation, w, was

relatively unaffected by the rate of change of rm (Table 2; see com-

ment above). As with fluctuating rv, the stability of the size (16)

and eccentricity (1ε) were unaffected by fluctuating rm; however,

the stability of the orientation of G (measured by 1w) was highest

under slowly changing rm and lowest under unchanging or rapidly

changing rm (Table 2).

Under fluctuating population size with rv = rm = 0 and

fixed, the mean value of 6 decreased with increasing s2(N),

whereas mean ε and w were largely unaffected (Table 3). The

stability of the eigenvalues and 6 were lowest for high s2(N)

(Table 3).

These results suggest that the eigenstructure of G is most

stable when rv and rm change at a low rate and least stable under

unchanging or rapidly changing rv and rm (Table 2). The stability

of the total size and eigenvalues of G is weakly compromised by

increasing s2(N) (Table 3).

When I analyzed the simulation results using serial random

skewers, G was also fairly consistent in terms of the predictability

of the response to selection when rv and rm changed at a low

rate. However, the response of G to natural selection was even

more consistent if rv and rm were constant and zero, or if they

changed rapidly (Fig. 3A: scenario [j: s2(rm) = 0.1]; Fig. 4A:

scenario [n: s2(rv) = 0.1]). Evolutionary consistency of G was

also significantly decreased relative to the scenario of constant

correlational selection and mutation only under conditions of rv

and rm changing at an intermediate rate (s2(r) = 0.001; scenarios

(h) and (l); Figs. 3B, 4B), and not under other conditions.

Also in contrast to the result derived under constant correla-

tional mutation and selection, for conditions of changing rv and

rm the magnitude of the response to selection is severely affected

under some circumstances. In particular, M is highest and most

significantly inconsistent when compared to mutation–selection

scenario (a: rv = rm = s2(rv) = s2(rm) = 0; constant correla-

tional selection and mutation) under conditions in which rv and
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Table 2. The influence of changing values of the correlation coefficients of correlated natural selection (rv) and pleiotropic mutation (rm) on the stability of the eigenstructure of

G. s2(r) is the intergenerational variance in r. All other column heads are the same as in Table 1. All parameter values not shown are as in Table 1.

s2(rv) s2(rm) G11 G22 G12 rg l1 l2 6 ε w 1G11 1G22 1G12 1l1 1l2 16 1ε 1w

(a) 0 0 0.72 0.70 0.00 0.00 0.81 0.61 1.42 0.76 −3.88 0.042 0.042 0.021 0.041 0.041 0.03 0.06 8.18

(g) 0.0001 0 0.62 0.62 −0.03 −0.04 0.76 0.47 1.23 0.61 −13.04 0.042 0.042 0.019 0.042 0.042 0.03 0.06 4.79

(h) 0.001 0 0.57 0.58 −0.01 −0.02 0.71 0.44 1.16 0.63 −0.99 0.043 0.042 0.018 0.042 0.043 0.03 0.06 5.29

(i) 0.01 0 0.47 0.49 0.00 0.00 0.57 0.39 0.96 0.69 −2.63 0.043 0.043 0.015 0.042 0.043 0.03 0.06 6.18

(j) 0.1 0 0.45 0.44 0.00 −0.01 0.51 0.38 0.88 0.75 −2.72 0.043 0.043 0.014 0.043 0.043 0.03 0.06 7.73

(k) 0 0.0001 0.68 0.67 0.02 0.03 0.94 0.41 1.35 0.47 3.64 0.042 0.042 0.022 0.042 0.042 0.03 0.06 3.31

(l) 0 0.001 0.67 0.70 0.03 0.04 0.89 0.48 1.37 0.56 6.96 0.042 0.042 0.021 0.042 0.042 0.03 0.06 3.85

(m) 0 0.01 0.69 0.70 0.02 0.02 0.82 0.56 1.38 0.70 11.04 0.042 0.042 0.020 0.041 0.042 0.03 0.06 6.18

(n) 0 0.1 0.69 0.71 −0.03 −0.03 0.81 0.59 1.40 0.74 −10.62 0.042 0.042 0.021 0.041 0.042 0.03 0.06 7.21

Table 3. The influence of changing values of the effective population size (N) on the stability of the eigenstructure of G. s2(N) is the intergenerational variance in N. All other

column heads are the same as in Table 1. rv = rm = 0. All other parameter values not shown are as in Table 1.

s2(N) G11 G22 G12 rg l1 l2 6 ε w 1G11 1G22 1G12 1l1 1l2 16 1ε 1w

(a) 0 0.72 0.70 0.00 0.00 0.81 0.61 1.42 0.76 −3.88 0.042 0.042 0.021 0.041 0.041 0.03 0.06 8.18

(o) 10 0.76 0.78 0.01 0.01 0.88 0.66 1.54 0.76 −0.48 0.041 0.041 0.022 0.040 0.040 0.03 0.06 8.12

(p) 100 0.71 0.71 −0.01 −0.02 0.80 0.62 1.42 0.76 −6.39 0.042 0.041 0.021 0.041 0.040 0.03 0.06 9.01

(q) 1000 0.56 0.52 0.00 0.00 0.63 0.45 1.09 0.70 6.11 0.046 0.046 0.017 0.045 0.044 0.03 0.07 7.40

(r) 10,000 0.53 0.54 −0.01 −0.02 0.63 0.44 1.07 0.71 −4.78 0.050 0.050 0.019 0.049 0.049 0.04 0.07 7.64
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G MATRIX STABILITY

Figure 3. Evolutionary consistency of G under scenarios involving

a changing coefficient of correlational selection, rv. rv changes as a

random walk with variance s2(rv). (A) Mean angle in degrees, ū∆t ,

between the response vectors to random skewers as in Figure 1.

(B) The t-statistic for u t,0 for each value of t > 0. Significant consis-

tency and inconsistency is indicated by the horizontal dashed lines

as in Figure 1. (C) Mean magnitudinal similarity, M, as in Figure 1.

d) The t-statistic for Mt,0. Selection scenarios are listed in the fig-

ure legend. rm is held fixed at rm = 0. All other parameters are as

in Figure 1. See text for additional explanation.

rm change at an intermediate rate [s2(r) = 0.001; scenarios (h)

and (l); Figs. 3C, D, 4C, D].

When N changes over time, the evolutionary consistency of

G also depends on the rate of change in N. In particular, fluctu-

ating population size, in which s2(N) = 1000, severely increased

inconsistency of M (Figs. 5C, D). Higher or lower rates of change

of N induced less instability in M (Figs. 5C, D). There is also little

evidence for a simple monotonic relationship between evolution-

ary consistency and the effective population size (Ne)—calculated

as the harmonic mean of N (Appendix B).

The same disclaimer applying to the far right Figures 2A

and C, which is that many fewer comparisons are used to estimate

ū1t and M for large 1t than small, also applies to Figures 3A and

C, Figures 4A and C, and Figures 5A and C. Consequently, less

weight should be accorded to the far right of each panel figure.

Discussion
IS G STABILIZED BY CORRELATED SELECTION

AND MUTATION?

The G matrix plays a central role in modern evolutionary theory

because of its importance in determining the multivariate response

Figure 4. Evolutionary consistency of G under scenarios involving

a changing coefficient of correlational mutation, rm. rm changes

as a random walk with variance s2(rm). (A) Mean angle in de-

grees, ū∆t , between the response vectors to random skewers as in

Figure 1. (B) The t-statistic for u t,0 for each value of t > 0. Signif-

icant consistency and inconsistency is indicated by the horizontal

dashed lines as in Figure 1. (C) Mean magnitudinal similarity, M,

as in Figure 1. (D) The t-statistic for Mt,0. Mutation scenarios are

listed in the figure legend. rv is held fixed at rv = 0. All other

parameters are as in Figure 1. See text for additional explanation.

to selection (Lande 1979; Lande and Arnold 1983). However,

attempts to extend the equations of quantitative genetics to predict

multivariate evolution over macroevolutionary time scales rely on

a highly stable or predictably evolving G matrix (Arnold et al.

2001). There are no theoretical reasons to presuppose that G is

constant: theory predicts it to be stable in some circumstances and

unstable in others (Turelli 1988; Roff 2000). Empirical findings

that G may be stable over some time scales (reviewed in Roff

1997), suggest that the reconstruction of past selection and the

prediction of morphological diversification based on quantitative

genetic models may not be hopeless ventures (Lande 1979; Arnold

et al. 2001). Still, there is a paucity of empirical studies in which

G from more than a few related taxa are compared (but see Bégin

and Roff 2004), and there is little theory to suggest the factors

likely to result in high stability or instability of G.

In this paper, I provide insight into the impact of selection,

mutation, and effective population size on the evolutionary dy-

namics of G. In addition to the eigenstructure comparison method

(previously employed; see Jones et al. 2003), I also examined the

evolutionary consistency of G using the vector correlation ap-

proach of serial random skewers (Cheverud et al. 1983; Cheverud
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Figure 5. Evolutionary consistency of G under scenarios of chang-

ing effective population size, N. N changes as a random walk with

variance s2(N). (A) Mean angle in degrees, ū∆t , between the re-

sponse vectors to random skewers as in Figure 1. (B) The t-statistic

for u t,0 for each value of t > 0. Significant consistency and inconsis-

tency is indicated by the horizontal dashed lines as in Figure 1. (C)

Mean magnitudinal similarity, M, as in Figure 1. (D) The t-statistic

for Mt,0. rm and rv were held fixed at rm = rv = 0. All other pa-

rameters are as in Figure 1. See text for additional explanation.

1996). In this latter method, G matrix similarity is assessed ex-

plicitly in terms of the predictability of the response to selection

given random selection vectors, herein termed “evolutionary con-

sistency.”

I found that the evolutionary consistency of the response to

selection was fairly high across a range of conditions and even un-

der circumstances in which the eigenstructure of G was unstable

(Jones et al. 2003). This does not in any way negate the impor-

tance of the G matrix for evolutionary inference—to the contrary,

it implies that G may be sufficiently consistent for evolution-

ary inference so long as the conditions of correlational selection

and mutation are stable over time, irrespective of the particular

value of the coefficients of correlational selection and mutation.

This conclusion is quite compatible with the findings of Jones

et al. (2004) in which the reconstruction of past selection is effec-

tive when correlational selection and mutation are constant over

time—regardless of the actual value of the correlation coefficient

of correlational selection or mutation.

Evolutionary consistency is suggested by the small mean de-

viation from collinearity (ū always < 7◦ even for large 1t— which

corresponds to a very high vector correlation of r = cos(ū) ≈ 0.99)

between the response-to-selection vectors among all G matrices

evolving under conditions of constant correlational mutation and

selection (regardless of the actual values of rv and rm). This result

implies that the evolutionary importance of the differences among

matrices may be small (Fig. 2A). Furthermore, I found negligible

and statistically insignificant differences in the evolutionary con-

sistency of G among several of the mutation–selection scenarios

(Figs. 2B, D). Nonetheless, although I find that neither moder-

ately correlated selection nor moderately correlated mutation in

isolation significantly improves the evolutionary consistency of

G as assessed by serial random skewers, the increased stability of

G induced by correlational selection and mutation enhances the

consistency of G when both are high (Table 1; Figs. 2A, B).

A previous study identified factors that influence the stability

of the eigenstructure of G (Jones et al. 2003). I found some in-

stances in which although aspects of the eigenstructure of G were

destabilized, G nonetheless produced a consistent response to se-

lection (was evolutionarily consistent). This result is predicted by

Jones et al. (2003) who point out that the same conditions that

result in highly variable G matrix orientation also result in low

eccentricity (ε close to 1.0; p. 1758). This superficial discordance

between eigenstructure stability and evolutionary consistency will

generally be found when no eigenvector of G dominates, as is the

case when matrix eccentricity is low (corresponding to high val-

ues for ε). If no eigenvector dominates G, then the direction of

the response to selection is not constrained by G, and instability

in the orientation of G has little bearing on the response to natural

selection.

INSTABILITY OF G: AN “INTERMEDIATE

DISTURBANCE” HYPOTHESIS

I also found that although G may be evolutionarily consistent over

a broad range of conditions, it can be rendered evolutionarily in-

consistent by coefficients of correlational mutation and selection

that change over time, particularly if the rate of change is interme-

diate. If the correlation coefficient changes too slowly, it will not

change substantially during the course of the simulation and thus

will fail to induce any inconsistency in G. By contrast, if r changes

sufficiently rapidly, the covariance of r from one generation to the

next is so low that the system evolves as if mutation or selection

were uncorrelated.

This result would not be obtained by evaluating the eigen-

structure of G. In particular, when evaluated as the cross-

generational change in the orientation of G, stability is highest

for the slowest changing correlation coefficient of correlational

selection or mutation and lowest for the most rapidly changing

and unchanging correlations. This is contrary to the result from

serial random skewers in which an intermediate rate of change

renders G least evolutionarily consistent. Because serial random

skewers evaluates the evolutionary dynamics of G explicitly in
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terms of the response to natural selection, my findings suggest

that, holding all else constant, evolutionary analyses based on the

equations of theoretical quantitative genetics will be most severely

affected by the correlation coefficients of correlational mutation

and selection that change at an intermediate rate.

I also found a similarly nonmonotonic relationship between

the rate of fluctuation in population size and the evolutionary

consistency of G. When population size did not change at all,

G was most evolutionarily consistent. G was least consistent

when effective size changed at an intermediate rate. Unlike con-

ditions of fluctuating correlational selection and mutation, in

which both the direction and magnitude of the response to se-

lection are affected, under fluctuating effective population size

only the magnitude of the response to selection is inconsistent

over time. This is because effective population size primarily af-

fects the overall size of G, rather than its shape (see Jones et al.

2003).

WHAT IS MEANT BY AN INTERMEDIATE

RATE OF CHANGE?

One central result of this study is that the evolutionary consistency

of G evaluated by the response to selection does not increase or

decrease monotonically with the rate of change of the coefficients

of correlational selection or mutation, or the effective population

size. However, it is important to keep in mind that the specific

conditions of this study that were responsible for substantial in-

stability in G cannot be easily translated literally to the empirical

realm.

Two factors in particular prohibit this kind of extrapolation.

(1) The mutation rate used in this study (m = 0.0002 muta-

tions/allele generation) was used following Jones et al. (2003,

2004) and to facilitate computational expediency. This rate may be

unrealistically high for a single quantitative trait locus, but may be

realistic if considered to be the mutation rate for several physically

linked loci affecting the same trait (see Jones et al. 2003 [p. 1753]).

It is possible that similar matrix inconsistency would be induced

by lower s2(rm) if the value of m were also decreased and vice

versa. (2) The time scale over which the evolution of G is studied

in these analyses is quite short by macroevolutionary standards,

yet is longer than almost any ecological study (2000 generations).

It is possible that lower or higher s2(r) and s2(N) would induce

comparable matrix dynamics over longer and shorter evolutionary

time scales respectively. Figure 6 compares the evolutionary con-

sistency of G when s2(rm) = 0.001 and m = 0.0002 (model [l],

above) to that when both parameters are decreased by a factor of

10 and
√

10, respectively (which is the same as decreasing s and

m by the same factor,
√

10 : s2(rm) = 0.0001 and m ≈ 0.000063).

They exhibit almost identical evolutionary dynamics and neither

is similar to s2(rm) = 0.0001 and m = 0.0002 (Fig. 6). This shows

that simultaneously changing some parameters of the mutation–

Figure 6. Evolutionary consistency of G under several conditions

of fluctuating, rm. rm changes as a random walk with variance

s2(rm). s2(rm) = 0.001 with mutation rate m = 0.0002 is com-

pared to s2(rm) = 0.0001 with mutation rate m = 0.0002 × 10−1/2,

which is the same as decreasing s and m by the same factor (
√

10).

s2(rm) = 0.0001 and m = 0.0002 are also shown. All other param-

eters are the same as in Figure 4.

selection scenario can sometimes have compensatory effects on

the consistency of G.

Although the nature of the compensatory effect is an empiri-

cal observation of this study, its discovery is not surprising. This is

because for a given starting value of rm, the number of pleiotropic

mutations that arise with expected correlation rm is determined by

the relationship between m and s. If m is high relative to s, then

many pleiotropic mutations will take place before there has been

substantive change in rm. By contrast, if m is low relative to s,

then rm is likely to change too rapidly for there to be substantial

accumulation of pleiotropic mutations with correlation rm.

In spite of the limitations on the quantitative predictions that

can be made from this study, it may be useful to consider whether

empirical values for s2(rv), s2(rm), and s2(N) vary on a range

equal to or greater than that explored herein. If so, then the interme-

diate minimum in consistency will be experienced by empiricists.

If not, then the effective empirical relationship between s2(rv),

s2(rm), and s2(N) may be monotonic and not hump-shaped as

my results imply.

Compared to s2(rv) and s2(rm), s2(N) is very easy to

address. Empirical studies have shown both persistent popula-

tion stability and wide population fluctuation over ecological

time scales (e.g., Hanski et al. 1991; Hörnfeldt et al. 2005;

Venkateswaran and Parthasarathy 2005; Elias et al. 2006; Pellet

et al. 2006). These fluctuations can exist across several orders of

magnitude (e.g., Hörnfeldt et al. 2005), which exceeds the range

of N for this study. Furthermore, the rate of population fluctua-

tion can vary both among populations of a single species (e.g.,

EVOLUTION AUGUST 2007 1867



LIAM J. REVELL

Hanski et al. 1991) and over time within a single population (e.g.,

Hörnfeldt et al. 2005). In addition, genetic studies of mtDNA have

shown that present-day census sizes frequently exceed long-term

population genetic effective sizes (e.g., Avise 2000), an observa-

tion consistent with populations that fluctuate in size over time

(Hartl and Clark 1989).

Empirical values for s2(rv) and s2(rm) are much more dif-

ficult to find. A recent review (Kingsolver et al. 2001) observed

that many studies of natural selection have insufficient power to

detect quadratic selection (of which correlational selection is a

component) or neglect to even estimate it. Fluctuating linear nat-

ural selection is well known, however, in some cases involving

natural selection that reverses sign (e.g., Grant and Grant 1989;

Losos et al. 2006). Fluctuating correlational selection may be as

common but is poorly documented.

Similarly, the temporal stability of rm is poorly known. One

study designed to experimentally estimate M, the mutational

variance–covariance matrix of which rm is a component, showed

that although M in different experimental lines were correlated,

there were also significant differences in M among lines (Camara

and Pigliucci 1999; Camara et al. 2000). How this result applies

to the temporal stability of rm is unclear; however, if M differs

among experimental isogenic lines, it is also highly plausible that

M and rm vary over time.

In all, it is clear than in some species fluctuating N is suf-

ficiently large to drive significant inconsistency in G. However,

in this study variable N affected primarily the evolutionary con-

sistency of the magnitude of the response to selection, impacting

little the evolutionary consistency of the direction of the response

to selection (Fig. 5). By contrast, fluctuations in rv and rm severely

influenced the evolutionary consistency of G, but it is unclear over

what range rv and rm naturally vary.

EXTENSION TO A MULTIVARIATE G MATRIX

Following previous authors (e.g., Jones et al. 2003, 2004) I use

simple bivariate quantitative genetic simulations in this study.

Most empirical quantitative genetic experiments estimate G for

three or more traits. It is possible that the results of this study

apply equally to the evolution of higher dimensional G matrices;

however, this cannot be assumed.

Multivariate quantitative genetic simulations create many dif-

ficulties that do not affect the bivariate case (discussed in Ap-

pendix C). However, it can be shown in a very limited set of

numerical simulations that the results for four traits are consis-

tent with those obtained herein for two traits (Appendix C). In

particular, evolutionary consistency is lowest when the matrix of

correlational pleiotropic mutation is unstable.

Although my multivariate simulations are quite limited

in scope, to my knowledge this is the first study presenting

individual-based multivariate quantitative genetic simulations of

the evolution of the G matrix for more than two phenotypic traits.

Future similar studies might consider a more expansive set of

simulations of the evolution of the multivariate G matrix.

CONCLUSIONS

In this study the evolutionary dynamics of G in computer sim-

ulations were evaluated using eigenstructure analysis and an ap-

proach utilizing the response to random selection gradients. This

“evolutionary consistency” provides a measure of the usefulness

of G for evolutionary inferences that rely on a stable covariance

structure.

Evolutionary consistency was high under some simulation

conditions in which the eigenstructure of G was unstable. This

was because of the fact that under many of the simulation condi-

tions explored in this and previous studies (e.g., Jones et al. 2003),

the circumstances in which the orientation of G is least stable co-

incide with those in which matrix eccentricity is low. Conse-

quently, instability of the matrix orientation in these simulations

does not affect the consistency of G.

Under conditions of fluctuating correlational selection and

mutation, and fluctuating population size, G was most inconsis-

tent when fluctuations occurred at an intermediate rate—that is,

matrix inconsistency does not increase monotonically with in-

creasing rates of fluctuation in the coefficients of correlational

selection and mutation, and the population size. Population fluc-

tuation over ecological time scales is well known. However, at the

present time, estimates of the temporal stability of the coefficients

of correlational selection and mutation from natural populations

are lacking. Consequently, although it is highly plausible that the

rates of fluctuation in these parameters vary on the range ex-

plored by this study, concrete empirical recommendations await

estimates of the temporal stability of correlational selection and

mutation.
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Appendix
Appendix A. Fluctuating coefficients of

correlational mutation and selection and the

evolutionary dynamics of G.

To study the evolutionary dynamics of G when the coefficients of

correlational selection and mutation varied over time, I simulated

changing rv and rm under a Brownian motion process with bounds

−1.0 and 1.0, and variance s2(r).

Figure A1 provides example time series for rv or rm over

2000 generations using the same values for s2(r) as in the main

text.

Appendix B. Effective population size and the

evolutionary dynamics of G when the population

size varies over time.

To determine the relationship between the effective population

size (N e) and the evolutionary dynamics of G, I first calculated

N e from each simulation in which the population size N was var-

ied over time. I calculated N e as the harmonic mean of N over the

course of the simulation (Hartl and Clark 1989). In these simu-

lations, as discussed in the main text, I varied N according to a

Brownian motion process with N(0) = 1000, bounds 20 ≤ N ≤
2000, and variance s2(N).

Table B1 lists the mean effective population sizes for each

value of s2(N), along with the standard deviation of N̄e, ŝ(N̄e).

I obtained N̄e by calculating the arithmetic mean across runs

of the harmonic mean of N within runs for a given simulation

scenario.

To provide examples of the sort of population size fluctuation

that results from different s2(N), I simulated N over time for 2000
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Figure A1. Example time series for the correlation coefficient, r, of correlational mutation or natural selection. s2(r) is the expected

variance across generations. r was evolved according to a Brownian motion process with bounds −1.0 ≤ r ≤ 1.0.

generations under each of five s2(N) [including the trivial case of

s2(N) = 0]. Quantitative genetic simulations were performed over

12,000 generations, see main text, although evolutionary dynam-

ics were only assessed in the final 2000 generations. These values

of s2(N) correspond to mutation-selection scenarios (a) and (o)

through (r) in the main text. Figure B1 plots N over time under each

scenario.

Appendix C. Evolutionary dynamics of G matrices

containing more than two traits.

To explore the generality of the findings presented in this study

in which, following Jones et al. (2003, 2004), I investigate only

the evolutionary dynamics of a bivariate G matrix, I simulated the

evolution of G containing four traits.

Table B1. Mean effective population size for various rates of

change in N. Mean effective size for each simulation condition

was calculated as the arithmetic mean across runs of the harmonic

mean within runs of N for each of 20 runs. ŝ(N̄e) was calculated as

the square root of the variance among runs in Ne.

s2(N) N̄e ŝ(N̄e)

(a) 0 1000 0.0

(o) 10 1065 253.1

(p) 100 1094 529.8

(q) 1000 732 473.5

(r) 10,000 540 258.4

Multivariate simulations are subject to several limitations that

do not affect the bivariate case. Firstly, multivariate simulations

are much more computationally intensive. Second, the mutation-

selection parameter space dimensionality increases in proportion

to the square of the number of traits, m [in particular the num-

ber of parameters of correlational selection and mutation is equal

to m(m + 1)]. Third, the coefficients of correlational selection or

mutation cannot be arbitrarily specified and cannot be arbitrarily

changed over time. This is because randomly chosen elements in a

correlation/covariance matrix will probably not satisfy the require-

ment of positive definiteness—nor will a positive definite matrix

whose elements are randomly changed remain positive definite.

Nonetheless, I performed some limited simulations of the

evolution of G in four dimensions.

For these analyses, I used a highly similar population genetic

model to that used in the bivariate simulations—with some excep-

tions made for computational reasons. In particular, whereas the

number of loci, n, was set to 50 in the bivariate simulations, it was

adjusted to 20 for the four-dimensional simulations; in contrast

to all bivariate simulations, no selection was simulated; and the

mutation rate, m, was set to 0.0025 at all loci.

I used two different correlation matrices for the mutational

effects of pleiotropic mutations. The first, Rm(1), represents the

very simple case in which there are no correlations between the

pleiotropic effects of mutations on the four traits. I also used this

matrix as a starting point for the case in which Rm was varied over

time:
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Figure B1. Example time series for the population size, N, under various conditions of fluctuating population size. s2(N) is the expected

variance across generations. N was changed according to a Brownian motion process with bounds 20 ≤ N ≤ 2000.

Rm(1) =











1.0 0 0 0

0 1.0 0 0

0 0 1.0 0

0 0 0 1.0











.

In the second case, I specified Rm(2) so as to contain the

range of correlation coefficients used for mutation (and selection)

in the bivariate simulations. Obviously, the specification of Rm(2)

was constrained by the requirement of positive definiteness:

Rm(2) =











1.0 0.75 0.50 0

0.75 1.0 0.75 0.50

0.50 0.75 1.0 0.75

0 0.50 0.75 1.0











.

I also set the mutational variances for the four traits as follows:

a = [0.05, 0.1, 0.15, 0.20].

I then ran three sets of 20 individual-based, numerical sim-

ulations under otherwise similar conditions to those used in the

bivariate simulations. In the first two sets of simulations I initial-

ized the correlation matrix of correlational pleiotropic mutation

with Rm(1) and Rm(2), respectively, and held the mutation matrix

constant throughout the simulation. In the third set, I initialized the

correlation matrix with Rm(1) and randomly perturbed it by small

steps over time, to simulate fluctuating correlational pleiotropic

mutation [henceforward, the conditions of this simulation are re-

ferred to as Rm(3)].

As discussed in a preceding paragraph of this appendix

(above), it is not possible to directly, randomly change the

Figure C1. The evolutionary consistency of G for four traits under

different conditions. Conditions are: constant correlation matrix

of the effects pleiotropic mutations, no correlation among traits

[Rm(1)]; constant correlation matrix of the effects of pleiotropic

mutations, correlations among traits [Rm(2)]; and a correlation ma-

trix of the effects of pleiotropic mutation that was initiated as in

Rm(1), but then evolved over time [Rm(3)]. Specific parameter val-

ues for the simulations are provided in the text.
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elements of a correlation matrix and expect the matrix to retain its

necessary property of positive definiteness. However, it is possi-

ble to evolve the elements of the Cholesky decomposition of the

correlation matrix and then each generation recover the correla-

tion matrix from its Cholesky decomposition matrix, where Rm =
CTC, in which C is the upper diagonal Cholesky decomposition

matrix—whose columns have been standardized to have a sum

of squares equal to 1.0—and T indicates that a matrix transpose

was calculated. This approach is affected by two shortcomings

apparent to the author. In particular (1) although the elements of

the Cholesky decomposition matrix might be evolved by some

model, say Brownian motion, it is not clear under what model

the correlation matrix is evolving; and (2) the elements of Rm

evolve at different rates, even though the elements of C may be

perturbed at a constant rate. That said, I can empirically verify

that if the Cholesky decomposition matrix is perturbed by small

steps, then the correlation matrix is perturbed by small steps, and

if the Cholesky decomposition matrix is evolved by large steps,

then the correlation matrix will also evolve by large steps. In these

simulations, I set the variance of the Brownian motion process by

which the Cholesky decomposition matrix of the correlation ma-

trix of the effects of pleiotropic mutations was evolved to s2 =
0.001.

I then performed serial random skewers, as described in the

main body of this article. Figure C1 shows that G is more consis-

tent when the covariance matrix of correlational pleiotropic mu-

tation is stable over time and less consistent when the mutation

matrix changes over time. The value of Rm also affects the evolu-

tionary consistency of G. G was more consistent if off-diagonal

elements of G are nonzero [Rm(2)].

Because these results are not incompatible with those ob-

tained by way of bivariate simulations, it is highly possible that

the findings of my study may extend to the more realistic situation

of a G matrix containing three or more traits. However, given the

limited nature of the multivariate simulations presented herein,

this should be the subject of future more detailed study.
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