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These are electronic supplementary appendices to: Revell, L. J. 2007. Testing the genetic 

constraint hypothesis in a phylogenetic context: A simulation study. Evolution 61: 2720-2727. 

 
Supplementary Appendix A. Comparison of results to analytic predictions. 

 

 As a check of the numerical simulations, I compared some of the results obtained in this 

study to those expected based on analytic predictions.  Under genetic drift, analytic predictions 

for G, the ‘phylogenetic mean’ (i.e., the expected value at the tips), the variance on the 

phylogenetic mean, and DIC are all relatively straightforward to obtain. 

 To determine whether the observed values for G conform to analytic predictions, I first 

computed a grand mean value for the G matrix across simulations (I), (II), and (III).  I excluded 

bounded simulations from this analysis because constrained morphospace acts as a selective 

force and thus makes an analytic prediction of G impossible to obtain exactly (Falconer and 

Mackay 1996). I calculated the overall mean of GMG  by first averaging G across all tips in each 

phylogeny to compute G  for each tree and dataset, and then by averaging G  across the total of 

300 phylogenies in sets (I), (II), and (III).  I then compared this grand mean, GMG to the 

predicted value for G
)

 which is provided in the text as MG eN2=
)

. 

 GMG and G
)

 were highly similar : 
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The element by element matrix correlation is 00.1)ˆ,r( GM =GG  and the regression coefficient 

from ordinary least-squares regression is 00.1)ˆ,( GM =GGβ . 

 To determine if the phylogenetic mean was equivalent to the starting condition (0.0), as 

predicted under drift, I calculated the phylogenetic means for each simulation and averaged 

across simulations in sets (I), (II), and (III).  Once again, I excluded bounded simulations for the 

reasons discussed in the preceding text. 

 The phylogenetic mean is equivalent to the state at the ancestral node in the tree and can 

be computed following Rohlf (2001) as: 

 )()( -1T1-1T XC11C1 −=a . 

Here a is the phylogenetic mean for the trait of interest, 1 is column vector of length n and 

composed of ones (where n = the number of taxa in the tree), superscript 
T
 indicates that a 

transpose is calculated, C is the coancestry matrix – a matrix proportional to the expected 

covariances among the tips (following Rohlf 2001), and X is column vector of length n 

composed of the character states at each tip. 

The observed mean value for the phylogenetic means of the four traits, a  agreed quite 

well with analytic predictions: 

 [ ]00.0,00.0,00.0,00.0)ˆ(expected =a , 

=)(observed a [0.29 (0.32), 0.30 (0.43), 0.78 (0.57), 0.35 (0.61)]. 

Standard errors for each value of a  (from variances, below) are shown in parentheses behind 
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each mean. The correlation between expected( â ) and observed( a ) is meaningless to evaluate, 

since there is no variance in the former – however no value of a  was significantly different from 

its expected value of 0.0. 

 Variance among runs in the values of the phylogenetic means for a given trait comes 

from two sources.  Firstly, variance comes from divergence among simulation runs during the 

1,000 generation ‘burn-in’ preceding the phylogenetic component of the simulation.  Secondly, 

error variance is associated with the estimation of the phylogenetic mean (Rohlf 2001).  These 

variance components are independent and thus to compute the expected total variance in a, these 

sources of variance can just be added together. 

 Normally, the expected variance among runs after 1,000 generations of drift could easily 

be computed as eNAD VtV ⋅= , which is the univariate version of equation [1] in the main text.  

However, because I initiated the simulations with conditions of genetic uniformity, genetic 

variance is accumulated by mutation at the same time as the populations differentiate.  

Consequently, computation of the expected value of VD is much more complicated.  In discrete 

time, this first component of variance (due to drift among simulation runs) can be estimated as 

follows: 
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In this equation, VD is just the variance among populations, t is the total time of the simulation 

(1,000 generation burn-in for this example), VM is the mutational variance, and Ne is the effective 

population size (100).  This equation is based on the recursive function for the accumulation of 

additive genetic variance within a single lineage under mutation and drift (numerator and inner 

summation), and the rate of variance accumulation among lineages under drift (denominator and 

outer summation). 

 The second component of variance is due to error in the estimation of a.  This error 

variance is given by Rohlf (2001) as: 

 1-1T

e )()N( −⋅= 1C1Aerr VV . 

I used the expected values of VA, the additive genetic variance within each lineage, from the 

diagonal of MG eN2=
)

, as above and in the text.  Here I can assume a constant value for VA 

because only the branches after the burn-in are significant in estimation error in â , and an 

equilibrium value for VA is expected by the end of the burn-in.  1 and C are as described in 

preceding text. 

 Because the stochastic topology of each tree was different, I computed the total expected 

variance in â as the sum of VD and the average value of Verr, i.e.: 

 D

p

i err VpiVaV +=∑ =1
)()ˆ(  

for p = 300 trees in simulation sets (I), (II), and (III).  This is possible because the expected 

variance among a set of observations drawn from distributions with different variances is 

equivalent to the mean value of those variances. 

 )ˆ(aV agreed quite well with analytic predictions: 

 [ ]1.118,6.88,1.59,8.29)]ˆ([expected =aV , 

 [ ]2.112,6.96,1.55,5.29)]([observed =aV . 

The correlation between expected )]ˆ([ aV  and observed )]([ aV was r = 0.99, and 
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β(observed )]([ aV ,expected )]ˆ([ aV ) = 0.98. 

To determine if DIC had a mean value equivalent to analytic prediction, I calculated DIC 

by scaling standardized independent contrasts to have an expected variance equal to the total tree 

length, which was held standard across simulations at 10
4
 generations.  This was accomplished 

by multiplying each contrast by the square root of the total tree length. 

This yields an expected value of eNlength)  treetotal( GDIC

))
×= .  Under the simulation 

conditions of this study, this expectation evaluates to: 
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For comparison, the observed mean value of DIC for simulations (I), (II), and (III) was: 
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Bounded simulations were again excluded, for reasons detailed above.  ICD
)

and ICD  seem to be 

in very close agreement. 

Thus, by every measure possible, for circumstances in which such predictions are 

available (or derived herein) the results of this study conform well to analytic predictions. 

 

 

Supplementary Appendix B.  Alternative matrix comparison method. 

 

In order to test for the generality of the results of this study, I also compared matrices 

using an alternative matrix comparison based on the T-method of Roff et al. (1999).  In this 

method, matrices are compared by evaluating the summed absolute values of the difference 

between corresponding elements. 

In the present study I compare within and among population matrices (G and D or DIC).  

These matrices are on different scales.  Thus, before subtraction I first rescaled the matrices so 

that their elements had the same mean-square (by dividing each element by the square root of the 

mean-square of the elements).  Results were highly similar for G and Ĝ , so only the results for 

Ĝ are shown. 

Figure B1 shows T(G
)

,DIC) – T(G
)

,D) for various speciation and evolutionary models. 

T(G
)

,DIC) is the summed absolute values of the differences between the elements of the theoretic 

expected value of the additive genetic variance-covariance matrix, G, and the mean squares, 

mean cross-products matrix of independent contrasts (phylogenetic divergence matrix), DIC.  

T(G
)

,D)  is the summed absolute values of the differences between the expected value of G and 

the among species variance-covariance matrix calculated ignoring phylogenetic non-

independence (non-phylogenetic divergence matrix), D. 

For constant rate speciation, T(G
)

,DIC) – T(G
)

,D) was significantly less than 0.0 (mean 



Revell 2007, Supplementary Appendices  4 

difference -1.18, t (df=99) = -11.1, P < 0.001), indicating that (scaled appropriately) DIC is more 

similar to G than is D (Fig. B1A). 

The model of speciation affected the difference, T(G
)

,DIC) – T(G
)

,D), with the difference 

being significantly less negative than constant rate speciation if the speciation rate was initially 

high but decreased over time (speciation model II), and more negative, but not significantly so, 

when the speciation rate was initially low but increased over time (ANOVA F (df=2,297) = 16.7; 

P < 0.001; Fig. B1A). 

Results for T(G
)

,DIC) – T(G
)

,D) were also qualitatively similar to those obtained for the 

vector-correlation when evolution was bounded.  Both T(G
)

,DIC) and T(G
)

,D) were greater than 

in the unbounded case, and their difference was significantly more negative [t (df=185.6) = -

4.84, P(two-tailed) < 0.001; Fig. B1B]. 

Thus, overall results were highly qualitatively highly similar whether matrix similarity 

was measured using vector-correlation, or via a modification of Roff et al.’s (1999) T-method 

approach. 

Fig. B1 
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Figure B1. T(G
)

,DIC) - T(G
)

,D) from simulation, for various speciation 

histories and simulation conditions.  All matrices were rescaled to have 

equivalent mean-square prior to analysis.   A. Speciation histories are as in 

Figure 1 and text.  B. Simulation was performed in bounded phenotype space 

as described in Figure 1 and text.  Differences are from individual-based 

simulations on the same set of phylogenies as in (I).  Groups indicated by a 

different lowercase letter (i.e., a, b, c) are significantly different from each 
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Supplementary Appendix C. Comparison of results to non-parametric tests. 

 

 In order to determine if the results of this study were robust to violations in the 

assumptions of parametric statistics, I also performed analogous non-parametric statistical tests 

and compared the results.  In this appendix, I present the results and significances of both 

parametric and non-parametric tests for comparison. 

 Table C1 shows the results from parametric and non-parametric tests of the hypothesis 

that r(G
)

,DIC) - r(G
)

,D) = 0.0 against that alternative hypothesis that r(G
)

,DIC) - r(G
)

,D) > 0.0, 

which would be the case if, as hypothesized, DIC provides a better fit to Lande’s (1979) equation 

(equation [1], in text) than does D.  Qualitatively, parametric and non-parametric results are in 

close agreement. 

 Table C2 shows the results from parametric and non-parametric tests of an effect of 

speciation model (comparison: I, II, III) or bounded morphospace (comparison: I, bounded) on 

the difference r(G
)

,DIC)- r(G
)

,D).  As in Table C1, parametric and non-parametric results of 

Table C2 are in close agreement. 

 

 
Table C1. Parametric and non-parametric results from tests of the hypothesis that r( G

)
,DIC) - r(G

)
,D) = 0.0 against 

that alternative hypothesis that r(G
)

,DIC) - r(G
)

,D) > 0.0 for several simulation conditions.  Conditions are: (I) 

constant rate speciation; (II) linearly decreasing speciation rate over time; (III) linearly increasing speciation rate 

over time, and (bounded) bounded phenotype space. 

Simulation Mean 

[r(G
)

,DIC)- r(G
)

,D)] 

t (df=99) P (>t) Wilcoxon 

W 

P (>W) 

I 0.037 7.34 <0.001 2397.5 <0.001 

II 0.015 5.35 <0.001 1790.5 <0.001 

III 0.047 7.69 <0.001 2214.0 <0.001 

bounded 0.191 20.2 <0.001 2519.0 <0.001 

 

 
Table C2. Parametric and non-parametric results from hypothesis tests for an effect on speciation model (I, II, III – 

see Table C1 caption) or simulation condition (I, bounded) on the difference, r(G
)

,DIC) - r(G
)

,D). 

Comparison ANOVA 

F 

ANOVA 

df 

P (>F) Kruskal-Wallis 

χ
2 

P (>χ
2
) 

I, II, III 11.2 2, 297 <0.001 36.6 <0.001 

I, bounded 205.7 1, 198 <0.001 112.5 <0.001 

 

 

Supplementary Appendix D. Variance in D and DIC. 

 

For simulations (I), (II), and (III) the following variances among simulation runs were 

calculated for the elements composing D and DIC : 
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On average the elements of D are 1.47 times more variable than those of DIC under genetic drift. 

 

 

Supplementary Appendix E. Testing for phylogenetic signal in unbounded and bounded 

simulations. 

 

 Some of the simulations performed in this study involved simulating quantitative trait 

evolution in a bounded morphospace.  The morphospace was strictly bounded in my individual 

based simulations by setting the fitness of individuals outside of the bounds to 0.0, and to 1.0 

otherwise. 

 Bounded morphospace was simulated because this type of constraint is expected to erode 

so-called ‘phylogenetic signal’ (or the correlation between patristic distance and phenotypic 

similarity) over time.  This expectation can easily be confirmed by comparing the mean value of 

the K-statistic of Blomberg et al. (2003) from unbounded and bounded simulations 

[ K (unbounded) = 1.00; K (bounded) = 0.28].  Figure E1 shows the distribution of the natural 

logarithm of K for unbounded (black bars) and bounded (grey bars) simulations.  The expected 

value of K under genetic drift and in the absence of constraint is 1.00 (the logarithm of which is 

0.0, see Figure E1). 
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Figure E1.  Histogram indicating the distribution of the natural logarithm of the 

K-statistic of Blomberg et al. (2003) for unbounded (black bars) and bounded 

(grey bars) quantitative genetic simulations. K provides a measure of the 

‘phylogenetic signal’ in the data, and has an expected value of log(K) = 0.0 under 

genetic drift, which is indicated by the vertical dashed line.  Phylogenetic signal 

is decreased when evolution is bounded. 
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