
Phylogenetic signal and linear regression on

species data

Liam J. Revell*

National Evolutionary Synthesis Center, Duke University, Durham, NC 27705, USA

Summary

1. A common procedure in the regression analysis of interspecies data is to first test the independent

and dependent variables X and Y for phylogenetic signal, and then use the presence of signal in one

or both traits to justify regression analysis using phylogenetic methods such as independent con-

trasts or phylogenetic generalized least squares.

2. This is incorrect, because phylogenetic regression assumes that the residual error in the regres-

sion model (not in the original traits) is distributed according to a multivariate normal distribution

with variances and covariances proportional to the historical relations of the species in the sample.

3. Here, I examine the consequences of justifying and applying the phylogenetic regression incor-

rectly. I find that when used improperly the phylogenetic regression can have poor statistical perfor-

mance, even under some circumstances in which the type I error rate of the method is not inflated

over its nominal level.

4. I also find, however, that when tests of phylogenetic signal in phylogenetic regression are applied

properly, and in particular when phylogenetic signal in the residual error is simultaneously

estimated with the regression parameters, the phylogenetic regression outperforms equivalent

non-phylogenetic procedures.
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Introduction

Phylogenetic methods have become de rigueur in the analysis

of interspecies data (Harvey&Pagel 1991). This is because spe-

cies are non-independent for the purposes of statistical analysis

due to their common history (Felsenstein 1985; Harvey &

Pagel 1991). This problem of the statistical dependence of

related species has been solved in various different ways for

different types of data and scientific questions (e.g. Ridley

1983; Felsenstein 1985, 2005, 2008; Cheverud, Dow & Leute-

negger 1985; Grafen 1989; Pagel & Harvey 1989; Maddison

1990; Garland et al. 1993; Hansen 1997; Pagel 1999; Garland

& Ives 2000; Rohlf 2001; Butler & King 2004; Ives, Midford &

Garland 2007; Revell et al. 2007; Hansen, Pienaar & Orzack

2008; Lajeunesse 2009; Revell & Collar 2009; reviewed in

Harvey & Pagel 1991; Felsenstein 2004). Arguably, the most

widely used statistical method for the analysis of interspecific

data that accounts for the historical relationships of species is

the phylogenetic regression (Felsenstein 1985; Grafen 1989).

Typical linear regression analysis is of the form:

y = Xb + e, with the ordinary least squares (OLS) solution:

b̂ ¼ ðX0XÞ�1X0y, in which y is an n · 1 vector (for n species)

containing values for the dependent variable, Y; X is an

n · (m + 1) matrix containing 1Æ0s in the first column and the

m independent (explanatory) variables of themodel in columns

two throughm + 1; and b̂ is a vector containing the parameter

estimates (including intercept) of the fitted univariate or multi-

variate linear regression model (Rencher & Schaalje 2008). e is
an n · 1 vector containing the residual error in the model, and

under OLS it is assumed that e is multivariate normally distrib-

uted with a variance–covariance matrix given by r2
e I. Here, I is

the identity matrix (an n · n matrix containing 1Æ0s on the

diagonal and zeroes elsewhere), and r2
e is the residual variance

of the model (i.e. the variability in Y not explained by the

regressors).

If the residuals in e are not distributed according to r2
e I, but

instead according to r2
eC in which C is known and is not pro-

portional to I (i.e.C „ kI for k 2 R and k > 0.0), then fitting

the regression model becomes a generalized (instead of ordin-

ary) least squares problem (Rohlf 2001; Kariya & Karuta

2004; Rencher & Schaalje 2008). For non-phylogenetic data,

C „ kI might be true, for example, if the sampling variance

of Y is uneven across data points (i.e. if our data for Y have

been collectedwith varying amounts of error). In this situation,

C would be a diagonal matrix containing the n sampling
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variances of each of the observations for Y. Here, the general-

ized least squares regression would be the same as a weighted

regression in which the weights are proportional to the inverse

of the sampling variances for each observation of Y. In the

phylogenetic case, the problem is not usually that the diagonal

of C is uneven – all extant taxa in a phylogeny are temporally

equidistant from the root of the tree (by definition) so they are

frequently assumed to have equivalent variances (given that

they are all extant and have been measured with comparable

accuracy; but see Ives, Midford & Garland 2007). Rather, in

the phylogenetic case, it is that the off-diagonals of C are non-

zero due to the correlated histories of related species (Butler,

Schoener &Losos 2000; Garland& Ives 2000).

To solve this problem, we can find the minimum variance

regression slope and intercept using the generalized least

squares estimating equation (or Gauss–Markov estimator;

Kariya&Karuta 2004):

b̂ ¼ ðX0C�1XÞ�1X0C�1y:

This approach to the regression of interspecies data was

first suggested by Grafen (1989), and has since been

showed to be exactly equivalent to regression estimated

using the contrasts method of Felsenstein (1985; Garland

& Ives 2000; Rohlf 2001). The generalized least squares

estimating equation is similar to the OLS estimator (given

above), except that now we have down-weighted each

observation for Y (and corresponding row of X) depend-

ing on the correlation of its residual error with the other

observations in our set.

Under a simple Brownian motion model for evolutionary

change in Y and the Xs (Cavalli-Sforza & Edwards 1967; Fel-

senstein 1985, 2004), y (or any column ofX, barring the first) is

expected to be distributed as a multivariate normal with vari-

ance–covariance matrix given by r2
yC (or r2

xC) in whichC con-

tains the height of each of the n tips of the tree on its diagonal,

as well as the heights of the most recent common ancestor of

each species pair i and j in each i,jth off-diagonal position (Fel-

senstein 1973; O’Meara et al. 2006). r2
y (or r2

x) gives the phylo-

genetic variance or ‘evolutionary rate’ for Y (or X; O’Meara

et al. 2006; Revell 2008). More importantly, however,

e = y ) Xbwill also be distributed according to amultivariate

normal with variance–covariance matrix given by r2
eC under

this evolutionary scenario. Figure 1(b) shows the computation

ofC from a simplified five taxon tree given in Fig. 1(a).

When data for our dependent and independent variables

come from species it is a common procedure to estimate the

degree to which each variable is distributed according to the

variance–covariance matrices r2
yC and r2

xC. This measure-

ment, which can be taken in a variety of ways, is usually

described as a measure of ‘phylogenetic signal’ for the charac-

ters in question (e.g. Blomberg & Garland 2002; Freckleton,

Harvey & Pagel 2002; Blomberg, Garland & Ives 2003; Revell,

Harmon & Collar 2008). If X and Y have been evolved by

Brownian motion evolution, then their phylogenetic signal will

be high (i.e. close to 1Æ0; Revell, Harmon & Collar 2008). Fur-

thermore, if X and Y have evolved by Brownian motion then

e = y ) Xb will be distributed according to r2
eC and the phy-

logenetic regression is an appropriate method to analyze the

relationship between the independent variables contained in X

and the response variable of our model,Y. Thus, it is tempting

to use high phylogenetic signal in the dependent and ⁄or inde-
pendent variables as a justification for the phylogenetic regres-

sion. This is, in fact, commonly done (e.g. Ashton 2002;

Gustafsson & Lindenfors 2004; Rezende, Bozinovic &

Garland 2004; Muñoz-Garcia & Williams 2005; Collen et al.

2006; Ebensperger & Blumstein 2006; Ezenwa et al. 2006;

Duminil et al. 2007; Hendrixson, Sterner & Kay 2007; John-

son, Isaac & Fisher 2007; Rönn, Katvala & Arnqvist 2007;

Beaulieu et al. 2008; Capellini et al. 2008; Møller, Neilsen &

Garamzegi 2008; Lovegrove 2009; Lindenfors, Revell & Nunn

2010).

However, it does not follow that if phylogenetic signal forX

and ⁄orY is relatively high then e = y ) Xbwill necessarily be
distributed according to r2

eC. Furthermore, it is also possible

that even if phylogenetic signal is very low, e = y ) Xb may

still be distributed with variance–covariancematrix r2
eC. Thus,

the appropriate test for phylogenetic signal is actually on the

residual variability in Y given our regression model – a test

which is relatively infrequently applied. In this study, I simulate

scenarios in which X and ⁄or Y have relatively high phylo-

genetic signal, but in which e = y ) Xb is non-phylogenetic

and thus the phylogenetic regression is inappropriate. I show

(a)

(b)

(c)

Fig. 1. (a) A simple, five taxon tree with branch lengths. (b) The

matrix C, which is proportional to the expected variance–covariance

matrix of the residual error in a PGLS phylogenetic regressionmodel.

(c) A more flexible residual error matrix incorporating the parameter

k, which can be estimated usingmaximum likelihood.
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that using a phylogenetic regression here will induce increased

variance on the regression estimator. I also examine the possi-

bility that X and ⁄or Y are non-phylogenetic, but that

e = y ) Xb is distributed according to r2
eC. In this case, the

phylogenetic regression is appropriate; however, standard

diagnostic tests on X andYmight be taken to imply that ‘phy-

logenetic correction’ of the regression is unnecessary. I show

that ignoring phylogeny in this case can lead to poor statistical

performance of the regression. Finally, I repeat a maximum

likelihood procedure using the k statistic of Pagel (1999) in

which we simultaneously estimate phylogenetic signal and the

regression parameters (e.g. Revell 2009), thus obviating the

need for a priori estimation of phylogenetic signal in the regres-

sion variables.

Materials and methods

To illustrate the case in point, I conducted four sets of numerical sim-

ulations, each under various conditions. First, I simulated X with

phylogenetic signal, but in which the residual error in e = y ) Xb
was distributed according to r2

e I; i.e. it was non-phylogenetic.

Depending on the relationship between X and Y (i.e. b), as well as the
size of the residual variance r2

e ,Ymay or may not also show phyloge-

netic signal in this model. Second, I simulatedXwithout phylogenetic

signal, but in which the residual variation in Y (e = y ) Xb) was dis-
tributed according to r2

eC; i.e. it was phylogenetic. Again, depending

on b and r2
e ,Ymay ormay not have signal in this model. Third, I sim-

ulated X and the residual variability in Y both with phylogenetic sig-

nal. This is the traditional Brownian motionmodel (Felsenstein 1985,

2004). Fourth, I simulated neitherX norYwith phylogenetic signal. I

conducted all four of these simulation scenarios across several condi-

tions for the magnitude of residual variability, r2
e , and for the rela-

tionship between X and Y, b. In particular, for fixed variance of X

(r2
x ¼ 1�0), I simulated low, medium and high residual variation in Y

(r2
e ¼ 0�01, 0Æ1, and 1Æ0). For each value of residual variability in Y, I

simulated a low, moderate and high regression relationship between

X andY (in which ‘low’means close to zero in this case, not negative).

I used the regression slopes of b1 = 0Æ00, 0Æ75 and 0Æ90 for these

conditions.

Generating data according to these models is quite easy. First, I

simulated 1000 stochastic pure-birth phylogenetic trees, each contain-

ing a fixed number of species (n = 100). I arbitrarily rescaled these

trees to have a total length from the root to any tip of 1Æ0. To simulate

data on the trees in whichX has signal, but in which the residual vari-

ation inY givenX is uncorrelatedwith the tree, I simply generatedmy

data vector for X, as x ¼ cholðr2
xCÞ

0
u, in which cholðr2

xCÞ denotes
the upper triangular Cholesky decomposite ofC times the rate of evo-

lution in X (r2
x), and u is a vector of values sampled randomly from

the standard normal distribution. I then generated a similar vector

for the residual error of my regression model, but in this case I simu-

lated the error to be uncorrelated, i.e. e ¼
ffiffiffiffiffi
r2

e

p
v. v is a vector of un-

correlated random standard normal deviates, as before. I then simply

computed y = xb1 + e, where b1 is the desired slope of the regres-

sion relationship between X and Y and the intercept of the model is

(arbitrarily) set to zero.

Generating data for X that is uncorrelated with the tree, but in

which residual variability in the model y = xb1 + e is phylogenetic,
was equally straightforward. Here, I just simulated X as x ¼

ffiffiffiffiffi
r2
x

p
u,

residual error e as e ¼ cholðr2
eCÞ

0
v, and computed y = xb1 + e, as

before.

I also simulated data for X and residual error in Y that were both

correlated with the tree. To accomplish this, I just calculated

x ¼ cholðr2
xCÞ

0
u, e ¼ cholðr2

eCÞ
0
v and y = xb1 + e, for vectors of

random standard normal variates u and v.

Finally, I simulated data for X and residual error inY that was un-

correlated with the phylogeny. In this case, I just generated the ran-

dom vector for x and residual error as x ¼
ffiffiffiffiffi
r2
x

p
u and e ¼

ffiffiffiffiffi
r2

e

p
v,

respectively, for standard normal vectors u and v, as before. Then, I

computed y = xb1 + e.
The last two generating models are commonly assumed or dis-

cussed in the phylogenetic literature. For instance, the model in which

both data for X and residual error in Y have phylogenetic signal is

exactly equivalent to the common Brownian motion model (e.g.

Felsenstein 1973, 1985; O’Meara et al. 2006). The model in which

neither X nor Y have phylogenetic signal might be expected if Y

evolves as a strong adaptive response toX, butX is uncorrelated with

the phylogeny (e.g. Blomberg, Garland & Ives 2003; Butler & King

2004; Hansen, Pienaar &Orzack 2008; Lavin et al. 2008).

The first two generating conditions are much more rarely consid-

ered. I can suggest a couple of scenarios to which they might well

apply; however, I am sure that biologically savvy readers of this

article will come up with others. For example, phylogenetic signal

in X but no phylogenetic signal in Y given X would be expected if

X evolved by Brownian motion, and Y was determined completely

by X, but was measured or phenotypically expressed with error. As

long as the measurement or expression error was not phylogeneti-

cally correlated, this would represent an example of the first gener-

ating model. In the second generating model, there is no

phylogenetic signal in X, but residual values for Y given X have sig-

nal. We might expect this pattern of interspecific variation if Y rep-

resented a phenotypically plastic response to a random (non-

phylogenetic) environment X, but the magnitude of the plasticity

was phylogenetically autocorrelated. Other biological processes that

could result in generating conditions one or two are certainly

possible.

For each simulation model and parameter conditions, I fit three

different linear regression models for the relationship between X and

Y. First, I fit an OLS regression, for which the estimating equation is

given above, usingX ¼ 1 x½ �, where 1 is a column vector of 1Æ0s. To
test the null hypothesis that the regression slope is b1 = 0.0, we need

to calculate the variance–covariancematrix of our estimator, b̂, which
is given by:

V ¼ r2
e ðX0XÞ

�1 or V ¼ ðy� XbÞ0ðy� XbÞðn� 2Þ�1ðX0XÞ�1:

We can then compute tðd.f. ¼ n� 2Þ ¼ b1=
ffiffiffiffiffiffiffiffi
V11

p
, which should

be distributed as a t-statistic with n ) 2 = 98 d.f. (Rencher &

Schaalje 2008). With the term V11, I am referring to the estima-

tion variance component corresponding to b1 (not b0, the inter-

cept of the model), which is actually in the second row and

column of V.

Second, I fit the phylogenetic generalized least squares model

(PGLS), in which the error structure of the residual vector,

e = y ) Xb, is assumed to be given by r2
eC. As noted earlier, this

model will yield exactly the same regression slope estimate as the pro-

cedure of independent contrasts followed by regression through the

origin (Felsenstein 1985; Garland, Harvey & Ives 1992; Garland &

Ives 2000; Rohlf 2001). Here, C is a matrix with the tree height

in every diagonal position, and the heights of the most recent

common ancestor of species i and j in each i,jth off-diagonal

position (Fig. 1b). The typical generalized least squares estimating

equation, b̂ ¼ ðX0C�1XÞ�1X0C�1y, is also given above. To conduct a
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test of the hypothesis that b1 = 0Æ0, we again compute

tðd.f. ¼ n� 2Þ ¼ b1=
ffiffiffiffiffiffiffiffi
V11

p
, but this time using

V ¼ ðy� XbÞ0C�1ðy� XbÞðn� 2Þ�1ðX0C�1XÞ�1:

Third, I simultaneously optimized the phylogenetic signal of the

residuals of Y along with our statistical model (PGLSk). To do this, I

used the parameter k, which is a multiplier of the off-diagonal ele-

ments in C (e.g. Pagel 1999; Freckleton, Harvey & Pagel 2002; Revell

& Harrison 2008). Figure 1(c) gives the hypothetical computation of

C (herein,Ck) for a given k on the five taxon tree in Fig. 1(a). In addi-

tion to use of the k parameter of Pagel (1999), there are a variety of

different ways in which C can be transformed (Grafen 1989; Pagel

1999; Blomberg, Garland & Ives 2003; Hansen, Pienaar & Orzack

2008); and more or less the same effect that is accomplished by k and

related parameters can also be achieved by transforming the branch

lengths of the tree prior to analysis (e.g. Garland, Harvey & Ives

1992; Clobert, Garland & Barbault 1998; Dı́az-Uriarte & Garland

1998; Blomberg, Garland & Ives 2003; Lavin et al. 2008; Gartner

et al. 2010). Here, I focus on k due to its relative simplicity and

because it can easily be simultaneously optimized with the regression

slope and intercept of our model. To accomplish this, we optimize the

following equation for the log-likelihood (L), based on the multivari-

ate normal equation:

Lðb̂; r̂2
e ; k̂Þ ¼ �ðy� Xb̂Þ0ðr̂2

eCkÞ�1ðy� Xb̂Þ
.
2� logðjr̂2

eCkjÞ
�
2

� n logð2pÞ=2:

Here, Ck is the variance–covariance matrix, C, to which the k
transformation has been applied (Fig. 1c; Pagel 1999; Freckleton,

Harvey & Pagel 2002). We do not have an analytic solution for

this equation, so it must be optimized numerically; however, the

difficulty of this optimization is alleviated considerably by the fact

that for any given value of k (and thus Ck), our conditional maxi-

mum likelihood estimates for b and r2
e can be obtained as follows

(Rencher & Schaalje 2008):

b̂ ¼ ðX0C�1k XÞ�1X0C�1k y and r2
e ¼ ð1=nÞðy� Xb̂Þ0C�1k ðy� Xb̂Þ:

By substituting Ck for C, we can conduct our hypothesis test of

b1 = 0Æ0 using the same calculations as for PGLS, above; how-

ever, we should test our t-statistic against a t-distribution with

n ) 3 d.f. due to the one additional parameter (k) estimated in

the PGLSk model. In this study, I limited estimation of k to the

interval 0�0 � k̂ � 1�0, because most values of k outside this inter-

val result in a likelihood equation that is not defined; however, in

theory k>1�0 or k<0�0 are possible (Freckleton, Harvey & Pagel

2002).

For each simulated data set, I compared the performance of OLS

and PGLS by determining which estimation procedure produced an

estimated regression slope, b1, that was closest to its generating value.
I also counted the number of significant regressions of each type to

estimate the type I error (when the generating regression slope was

b1 = 0Æ00) or power (when b1 > 0Æ00) of each procedure. Finally, I

determined the bias of each estimating procedure by computing the

mean parameter estimate across all the simulated data sets for each of

the three estimators. Several studies have shown that OLS and GLS

are unbiased even if the structure of the error term is specified incor-

rectly (e.g. Pagel 1993; Rohlf 2006; Rencher & Schaalje 2008; Revell

2009), so I did not expect bias to be significant for any of my estima-

tionmethods.

Finally, for each simulated data set I also computed a slew of phy-

logenetic diagnostics on the variables X and Y. I estimated k (Pagel

1999; Freckleton, Harvey & Pagel 2002), now for each character

separately; I computedK, a measure of phylogenetic signal developed

by Blomberg, Garland & Ives (2003); and, finally, I also calculated

independent contrasts (Felsenstein 1985), and computed both the

Pearson correlation (r) and Spearman rank correlation (q) between
the absolute values of the standardized contrasts and their expected

standard deviations prior to standardization (Garland,Harvey& Ives

1992).

For a single character, contained in (say) character vector y, k is

optimized using likelihood bymaximizing the following equation:

Lðk̂; r̂2; âÞ ¼ �ðy� â1Þ0ðr̂2
yCkÞ�1ðy� â1Þ

.
2� logðjr̂2

yCkjÞ
.
2

� n logð2pÞ=2;

in which 1 is a vector of 1Æ0s, as before; and the conditional max-

imum likelihood estimates of â and r̂2
y are given by â ¼

ð10C�1k 1Þ�110C�1k y and r2
y ¼ ð1=nÞðy� â1Þ0C�1k ðy� â1Þ, respec-

tively (Freckleton, Harvey & Pagel 2002). This equation is maxi-

mized using numerical methods. As before, we limited estimation

of k to the interval 0�0 � k̂ � 1�0.
Blomberg, Garland & Ives (2003) proposed an alternative measure

of phylogenetic signal which is receiving wide utility. Their measure,

K, can be computed as follows:

K ¼ ðy� â1Þ0ðy� â1Þ
ðy� â1Þ0C�1ðy� â1Þ

,
trðCÞ � nð10C�11Þ�1

n� 1
:

Here, â ¼ ð10C�11Þ�110C�1y; tr(C) indicates that the trace of C

has been calculated; and all other terms have been previously defined

(Revell, Harmon&Collar 2008).

As noted above, I computed the Pearson and Spearman correla-

tions between the absolute values of the standardized independent

contrasts of Felsenstein (1985) and the square roots of their expected

variances (Garland, Harvey & Ives 1992). This method is intended to

measure whether contrasts have been standardized appropriately –

which is not expected to have been the case if Brownian motion is an

inappropriate model for character evolution in our phylogeny. Thus,

a non-significant relationship between the contrasts and their stan-

dard deviations is often taken as evidence that phylogenetic methods

for regression are appropriate (Garland, Harvey & Ives 1992; Nunn

&Barton 2000; Fisher, Blomberg&Owens 2003).

In a detailed Appendix, I have provided computer code written in

the R programming language (RDevelopment Core Team 2009) that

implements the phylogenetic regression methods described above. I

have also provided code to fit both Pagel’s (1999) k (Freckleton, Har-

vey & Pagel 2002) and Blomberg, Garland & Ives’s (2003) K. Both

are often used asmeasures of phylogenetic signal on individual traits.

Results

Table 1 shows the mean parameter estimates, type I error

rates, and power for each estimating procedure (OLS, PGLS

and PGLSk), for data generated with phylogenetic signal in the

independent variable, X, but no phylogenetic signal in the

model residuals. As expected, both OLS and PGLS were unbi-

ased. The most obvious features of Table 1 are fourfold. First,

estimation accuracy is substantially higher for OLS than

PGLS. Averaged across simulation conditions, in 84Æ2% of

simulations OLS produced a better (i.e. closer to its generating

value) estimate of the regression slope than PGLS (Table 1;

Fig. 2). Second, variance among estimated values of b1 was
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much higher (on average 32Æ9 times higher) for PGLS than

OLS. Third (and in spite of points one and two), type I error

was not elevated relative to its nominal level for PGLS. Finally,

in simulations of b1 „ 0Æ00, power of the PGLS estimator

was deflated for conditions of high residual error, r2
e .

Table 2 shows phylogenetic diagnostics of X, Y, and the

bivariate regression model including k. Estimated phyloge-

netic signal was invariably high for X; however, it was also

quite high for Y when the generating value of b1 was high

and r2
e was relatively low. I also computed two different

independent contrasts diagnostics: the Pearson and Spear-

man rank correlation coefficients for the correlation between

the absolute values of the standardized contrasts and the

square root of their expected variances prior to standardiza-

tion. In general, these correlations were near zero for X (as

expected), and negative for Y, although for increasing b1 and
sufficiently low r2

e the strength of the correlations decreased

along with my power to detect a significant relationship

(Table 2).

My results for data generated with no phylogenetic signal in

the independent variable, X, but phylogenetically correlated

residual variation in Y are given in Tables 3 and 4. Here, the

PGLS estimator was better on average 84Æ5%of the time when

compared with the estimated regression slope obtained using

OLS (Fig. 2).However,OLSdid not suffer from increased type

I error when the generating regression slope was b1 = 0Æ00
(Table 3). Phylogenetic signal was invariably low for X

(Table 4). Phylogenetic signal was also generally quite low for

Y, except when b1 = 0Æ00. Diagnostic statistics on the con-

trasts for both X and Y overwhelming indicate inadequate

standardization, again except when b1 = 0Æ00, in which case

they indicated thatY, but notX, has been adequately standard-

ized in the computation of independent contrasts (Table 4).

When I generated data with phylogenetic signal in both the

independent variable and in the model residuals, I found that

PGLS vastly outperformed OLS. In this case, the PGLS esti-

mator was better on average 77Æ8% of the time (Table 5;

Fig. 2). I also found that type I error was substantially

increased for OLS, unlike in Table 3 when only the residual

error was simulated with phylogenetic signal and where OLS

had type I error near the nominal level. All measures of phylo-

genetic signal indicated high phylogenetic signal for both X

andY; and no independent contrasts diagnostic suggested that

the contrasts for X or Y had been inadequately standardized

(Table 6).

Finally, when I generated data with no phylogenetic signal

for X and no phylogenetic signal for the residual variability in

Table 1. Parameter estimation, type I error and power for OLS, PGLS and PGLSk for data generated with phylogenetic signal in X, but no

phylogenetic signal for themodel residuals

b1 r2
e b̂OLS varðb̂OLSÞ

Error ⁄
power b̂PGLS varðb̂PGLSÞ

Error ⁄
power OLS : PGLS b̂k varðb̂kÞ

Error ⁄
power

0Æ00 0Æ01 )9Æ62 · 10)4 1Æ49 · 10)4 0Æ055 )3Æ37 · 10)3 3Æ49 · 10)3 0Æ051 0Æ836 : 0Æ164 )9Æ26 · 10)4 1Æ50 · 10)4 0Æ050
0Æ10 )8Æ86 · 10)4 1Æ65 · 10)3 0Æ060 3Æ17 · 10)3 5Æ68 · 10)2 0Æ053 0Æ825 : 0Æ175 )8Æ22 · 10)4 1Æ70 · 10)3 0Æ057
1Æ00 )4Æ67 · 10)3 1Æ46 · 10)2 0Æ047 )1Æ06 · 10)2 3Æ97 · 10)1 0Æ045 0Æ829 : 0Æ171 )4Æ61 · 10)3 1Æ51 · 10)2 0Æ045

0Æ75 0Æ01 0Æ749 1Æ49 · 10)4 1Æ000 0Æ749 4Æ41 · 10)3 0Æ997 0Æ836 : 0Æ164 0Æ749 1Æ47 · 10)4 1Æ000
0Æ10 0Æ751 1Æ50 · 10)3 1Æ000 0Æ764 7Æ67 · 10)2 0Æ952 0Æ867 : 0Æ133 0Æ751 1Æ55 · 10)3 1Æ000
1Æ00 0Æ753 1Æ40 · 10)2 1Æ000 0Æ765 4Æ79 · 10)1 0Æ394 0Æ850 : 0Æ150 0Æ752 1Æ43 · 10)2 1Æ000

0Æ90 0Æ01 0Æ901 1Æ63 · 10)4 1Æ000 0Æ901 5Æ69 · 10)3 0Æ998 0Æ831 : 0Æ169 0Æ901 1Æ67 · 10)4 1Æ000
0Æ10 0Æ901 1Æ62 · 10)3 1Æ000 0Æ897 3Æ54 · 10)2 0Æ966 0Æ848 : 0Æ152 0Æ901 1Æ64 · 10)3 1Æ000
1Æ00 0Æ906 1Æ45 · 10)2 1Æ000 0Æ902 5Æ64 · 10)1 0Æ511 0Æ853 : 0Æ147 0Æ907 1Æ48 · 10)2 1Æ000

b1 and r2
e indicate the generating regression slope and residual error, respectively. b̂OLS indicates the mean parameter estimate by OLS

and varðb̂OLSÞ, the variation among simulations in the estimated slope. b̂PGLS and varðb̂PGLSÞ are likewise interpreted. OLS : PGLS indi-

cates the fraction of simulations for which OLS provided a better estimate of the regression slope (i.e. one closer to its generating value)

compared with the fraction for which PGLS provided a better estimate. b̂k indicates the mean parameter estimate for the regression

slope when the regression model was estimated simultaneously with k and varðb̂kÞ, the variation among simulations. Finally, error ⁄ power
indicates the type I error rate (if b1 = 0Æ00) or power of each estimation procedure.
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Fig. 2. A stacked bar graph showing the fraction of analyses in which

OLS or PGLS yielded a better (i.e. closer to its generating value)

parameter estimate of the regression slope, b1, for each of the four

simulation models of this study. Results are averaged across simula-

tion conditions for eachmodel.
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Y, OLS outperformed PGLS, as expected. Here, the OLS esti-

mator was better on average 79Æ9% of the time (Table 7;

Fig. 2). I also found that the type I error rate when b1 = 0.00

was elevated for PGLS relative to its nominal level (Table 7),

unlike the situation in Table 1. All measures of phylo-

genetic signal indicated low signal, and furthermore all

Table 3. Parameter estimation, type I error and power for OLS, PGLS and PGLSk for data generated with no phylogenetic signal in X, but

phylogenetic signal for themodel residuals

b1 r2
e b̂OLS varðb̂OLSÞ

Error ⁄
power b̂PGLS varðb̂PGLSÞ

Error ⁄
power OLS : PGLS b̂k varðb̂kÞ

Error ⁄
power

0Æ00 0Æ01 )2Æ47 · 10)4 8Æ04 · 10)5 0Æ049 )1Æ27 · 10)6 5Æ21 · 10)6 0Æ055 0Æ151 : 0Æ849 )1Æ50 · 10)4 5Æ47 · 10)6 0Æ049
0Æ10 )1Æ01 · 10)3 7Æ90 · 10)4 0Æ049 2Æ53 · 10)4 5Æ84 · 10)5 0Æ053 0Æ160 : 0Æ840 2Æ45 · 10)4 6Æ29 · 10)5 0Æ047
1Æ00 )2Æ39 · 10)4 8Æ17 · 10)3 0Æ049 2Æ40 · 10)4 5Æ76 · 10)4 0Æ049 0Æ176 : 0Æ824 5Æ94 · 10)4 6Æ04 · 10)4 0Æ044

0Æ75 0Æ01 0Æ750 7Æ38 · 10)5 1Æ000 0Æ750 5Æ14 · 10)6 1Æ000 0Æ157 : 0Æ843 0Æ750 5Æ70 · 10)6 1Æ000
0Æ10 0Æ751 7Æ92 · 10)4 1Æ000 0Æ750 5Æ44 · 10)5 1Æ000 0Æ153 : 0Æ847 0Æ750 6Æ02 · 10)5 1Æ000
1Æ00 0Æ749 8Æ54 · 10)3 1Æ000 0Æ750 5Æ43 · 10)4 1Æ000 0Æ134 : 0Æ866 0Æ750 5Æ65 · 10)4 1Æ000

0Æ90 0Æ01 0Æ900 8Æ02 · 10)5 1Æ000 0Æ900 5Æ69 · 10)6 1Æ000 0Æ152 : 0Æ848 0Æ900 6Æ08 · 10)6 1Æ000
0Æ10 0Æ900 7Æ53 · 10)4 1Æ000 0Æ900 6Æ24 · 10)5 1Æ000 0Æ153 : 0Æ847 0Æ900 6Æ55 · 10)5 1Æ000
1Æ00 0Æ902 8Æ00 · 10)3 1Æ000 0Æ900 5Æ80 · 10)4 1Æ000 0Æ163 : 0Æ837 0Æ900 6Æ18 · 10)4 1Æ000

Column headers are as in Table 1.

Table 2. Phylogenetic diagnostics forX,Y and the bivariate regression model, where the data have been simulated with phylogenetic signal inX,

but no signal in the residual variability ofY givenX

b1 r2
e kðXÞ kðYÞ kðY � XÞ K(X) K(Y) r(X)

Error ⁄
power r(Y)

Error ⁄
power q(X)

Error ⁄
power q(Y)

Error ⁄
power

0Æ00 0Æ01 0Æ998 0Æ014 0Æ012 0Æ991 0Æ066 )0Æ003 0Æ050 )0Æ521 1Æ000 )0Æ004 0Æ047 )0Æ538 1Æ000
0Æ10 0Æ998 0Æ014 0Æ012 0Æ993 0Æ068 )0Æ001 0Æ055 )0Æ523 1Æ000 )0Æ002 0Æ052 )0Æ549 1Æ000
1Æ00 0Æ998 0Æ016 0Æ013 1Æ010 0Æ068 0Æ005 0Æ038 )0Æ519 1Æ000 0Æ004 0Æ045 )0Æ545 1Æ000

0Æ75 0Æ01 0Æ998 0Æ979 0Æ010 0Æ995 0Æ714 0Æ001 0Æ061 )0Æ187 0Æ496 0Æ001 0Æ047 )0Æ121 0Æ245
0Æ10 0Æ998 0Æ827 0Æ013 1Æ004 0Æ272 0Æ002 0Æ047 )0Æ413 0Æ993 6Æ43 · 10)5 0Æ041 )0Æ340 0Æ919
1Æ00 0Æ998 0Æ300 0Æ012 1Æ020 0Æ094 0Æ007 0Æ052 )0Æ503 1Æ000 0Æ006 0Æ060 )0Æ501 0Æ997

0Æ90 0Æ01 0Æ998 0Æ984 0Æ013 1Æ001 0Æ777 1.30 · 10)4 0Æ057 )0Æ157 0Æ393 8Æ26 · 10)4 0Æ052 )0Æ099 0Æ175
0Æ10 0Æ998 0Æ872 0Æ010 0Æ996 0Æ337 0Æ003 0Æ052 )0Æ384 0Æ976 0Æ002 0Æ045 )0Æ299 0Æ838
1Æ00 0Æ998 0Æ386 0Æ012 0Æ980 0Æ105 )0Æ001 0Æ052 )0Æ497 1Æ000 6Æ95 · 10)4 0Æ054 )0Æ486 0Æ998

b1 and r2
e are as in Table 1. kðXÞ and kðYÞ indicate the mean value of phylogenetic signal estimated using the k method for each charac-

ter, X and Y, separately. kðY � XÞ indicates the mean fitted k, where k was estimated simultaneously with the regression model. K(X)

and K(Y) indicate the mean value of phylogenetic signal in X and Y, respectively, estimated using the K method. r(X) and r(Y) indicate

the mean Pearson product–moment correlation between the absolute values of the independent contrasts and the square roots of their

expected variances prior to standardization. q(X) and q(Y) are the mean values of the corresponding Spearman rank correlations.

Error ⁄ power indicates the type I error or power of each contrasts-based diagnostic.

Table 4. Phylogenetic diagnostics forX,Y and the bivariate regressionmodel, where the data have been simulated with no phylogenetic signal in

the independent variable,X, but signal in the residual error

b1 r2
e kðXÞ kðYÞ kðY � XÞ K(X) K(Y) r(X)

Error ⁄
power r(Y)

Error ⁄
power q(X)

Error ⁄
power q(Y)

Error ⁄
power

0Æ00 0Æ01 0Æ016 0Æ998 0Æ998 0Æ066 1Æ001 )0Æ520 1Æ000 )0Æ003 0Æ053 )0Æ549 1Æ000 )0Æ003 0Æ055
0Æ10 0Æ016 0Æ998 0Æ998 0Æ067 1Æ002 )0Æ520 1Æ000 )2Æ02 · 10)4 0Æ048 )0Æ550 1Æ000 )9Æ87 · 10)4 0Æ042
1Æ00 0Æ015 0Æ998 0Æ998 0Æ068 1Æ011 )0Æ521 1Æ000 )6Æ09 · 10)4 0Æ044 )0Æ546 1Æ000 )0Æ002 0Æ058

0Æ75 0Æ01 0Æ014 0Æ022 0Æ998 0Æ067 0Æ068 )0Æ519 1Æ000 )0Æ518 1Æ000 )0Æ546 1Æ000 )0Æ544 1Æ000
0Æ10 0Æ015 0Æ113 0Æ998 0Æ067 0Æ076 )0Æ520 1Æ000 )0Æ514 1Æ000 )0Æ546 1Æ000 )0Æ529 1Æ000
1Æ00 0Æ015 0Æ593 0Æ998 0Æ066 0Æ146 )0Æ518 1Æ000 )0Æ473 1Æ000 )0Æ544 1Æ000 )0Æ436 0Æ990

0Æ90 0Æ01 0Æ014 0Æ017 0Æ998 0Æ066 0Æ067 )0Æ522 1Æ000 )0Æ521 1Æ000 )0Æ548 1Æ000 )0Æ546 1Æ000
0Æ10 0Æ013 0Æ074 0Æ998 0Æ068 0Æ074 )0Æ521 1Æ000 )0Æ516 1Æ000 )0Æ547 0Æ999 )0Æ534 0Æ999
1Æ00 0Æ013 0Æ497 0Æ998 0Æ066 0Æ125 )0Æ520 1Æ000 )0Æ485 1Æ000 )0Æ549 1Æ000 )0Æ458 0Æ994

Column headers are as in Table 2.
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contrasts-based diagnostics indicated inadequate standardiza-

tion ofX andY (Table 8).

Notably, PGLSk, in which phylogenetic signal is esti-

mated simultaneously with our regression model, effectively

recovers the performance of the best model (either OLS or

PGLS) under all of the simulation conditions of the study.

This is evidenced by the very low estimation variance of b1
in the PGLSk model, regardless of the generating conditions

(Tables 1, 3, 5, 7). Because fitting the PGLSk models

requires the estimation of one additional parameter relative

to OLS or PGLS, the accuracy of PGLSk is slightly

decreased relative to OLS, when the assumptions of OLS

Table 5. Parameter estimation, type I error and power for OLS, PGLS and PGLSk for data generated with phylogenetic signal in X and the

model residuals

b1 r2
e b̂OLS varðb̂OLSÞ

Error ⁄
power b̂PGLS varðb̂PGLSÞ

Error ⁄
power OLS : PGLS b̂k varðb̂kÞ

Error ⁄
power

0Æ00 0Æ01 )5Æ15 · 10)4 6Æ72 · 10)4 0Æ426 )8Æ18 · 10)4 1Æ02 · 10)4 0Æ044 0Æ224 : 0Æ776 )7Æ96 · 10)4 1Æ02 · 10)4 0Æ045
0Æ10 )2Æ54 · 10)3 7Æ27 · 10)3 0Æ446 )8Æ25 · 10)4 1Æ05 · 10)3 0Æ055 0Æ213 : 0Æ787 )9Æ90 · 10)4 1Æ07 · 10)3 0Æ055
1Æ00 )6Æ30 · 10)4 7Æ61 · 10)2 0Æ463 )1Æ71 · 10)3 1Æ02 · 10)2 0Æ045 0Æ222 : 0Æ778 )1Æ36 · 10)3 1Æ02 · 10)2 0Æ045

0Æ75 0Æ01 0Æ751 7Æ70 · 10)4 1Æ000 0Æ750 9Æ89 · 10)5 1Æ000 0Æ201 : 0Æ799 0Æ750 1Æ00 · 10)4 1Æ000
0Æ10 0Æ749 7Æ02 · 10)3 1Æ000 0Æ751 1Æ06 · 10)3 1Æ000 0Æ223 : 0Æ777 0Æ751 1Æ07 · 10)3 1Æ000
1Æ00 0Æ744 6Æ61 · 10)2 0Æ981 0Æ752 1Æ07 · 10)2 1Æ000 0Æ237 : 0Æ763 0Æ752 1Æ08 · 10)2 1Æ000

0Æ90 0Æ01 0Æ899 7Æ73 · 10)4 1Æ000 0Æ900 1Æ03 · 10)4 1Æ000 0Æ239 : 0Æ761 0Æ900 1Æ03 · 10)4 1Æ000
0Æ10 0Æ901 6Æ74 · 10)3 1Æ000 0Æ901 1Æ06 · 10)3 1Æ000 0Æ217 : 0Æ783 0Æ901 1Æ06 · 10)3 1Æ000
1Æ00 0Æ895 7Æ32 · 10)2 0Æ991 0Æ902 1Æ05 · 10)2 1Æ000 0Æ223 : 0Æ777 0Æ902 1Æ04 · 10)2 1Æ000

Column headers are as in Tables 1 and 3.

Table 6. Phylogenetic diagnostics for X, Y and the bivariate regression model, where the data have been simulated with phylogenetic signal in

bothX and themodel residuals

b1 r2
e kðXÞ kðYÞ kðY � XÞ K(X) K(Y) r(X)

Error ⁄
power r(Y)

Error ⁄
power q(X)

Error ⁄
power q(Y)

Error ⁄
power

0Æ00 0Æ01 0Æ998 0Æ998 0Æ998 0Æ991 1Æ001)0Æ003 0Æ050 )0Æ003 0Æ053 )0Æ004 0Æ047 )0Æ003 0Æ055
0Æ10 0Æ998 0Æ998 0Æ998 0Æ993 1Æ002)0Æ001 0Æ055 )2Æ02 · 10)4 0Æ048 )0Æ002 0Æ052 )9Æ87 · 10)4 0Æ042
1Æ00 0Æ998 0Æ998 0Æ998 1Æ006 1Æ013)2Æ89 · 10)4 0Æ060 )3Æ17 · 10)4 0Æ052 )6Æ59 · 10)5 0Æ062 )1Æ67 · 10)4 0Æ050

0Æ75 0Æ01 0Æ998 0Æ998 0Æ998 1Æ001 1Æ000 8Æ53 · 10)4 0Æ061 5Æ36 · 10)4 0Æ060 9Æ11 · 10)4 0Æ047 2Æ05 · 10)4 0Æ042
0Æ10 0Æ998 0Æ998 0Æ998 1Æ004 0Æ997 0Æ002 0Æ047 1Æ44 · 10)4 0Æ051 6Æ43 · 10)5 0Æ041 )0Æ002 0Æ045
1Æ00 0Æ998 0Æ998 0Æ998 1Æ011 0Æ990 6Æ91 · 10)4 0Æ038 )0Æ001 0Æ038 3Æ85 · 10)4 0Æ050 )0Æ002 0Æ044

0Æ90 0Æ01 0Æ998 0Æ998 0Æ998 1Æ001 1Æ000 1Æ30 · 10)4 0Æ057 2Æ69 · 10)4 0Æ056 8Æ26 · 10)4 0Æ052 0Æ001 0Æ054
0Æ10 0Æ998 0Æ998 0Æ998 0Æ996 0Æ998 0Æ003 0Æ052 2Æ75 · 10)4 0Æ046 0Æ002 0Æ045 7Æ02 · 10)4 0Æ048
1Æ00 0Æ998 0Æ998 0Æ998 0Æ980 0Æ984 0Æ002 0Æ057 0Æ002 0Æ055 6Æ03 · 10)4 0Æ054 2Æ00 · 10)4 0Æ048

Column headers are as in Tables 2 and 4.

Table 7. Parameter estimation, type I error and power for OLS, PGLS and PGLSk for data generated with no phylogenetic signal inX nor in the

model residuals

b1 r2
e b̂OLS varðb̂OLSÞ

Error ⁄
power b̂PGLS varðb̂PGLSÞ

Error ⁄
power OLS : PGLS b̂k varðb̂kÞ

Error ⁄
power

0Æ00 0Æ01 )8Æ37 · 10)4 1Æ03 · 10)4 0Æ043 )1Æ11 · 10)3 1Æ71 · 10)3 0Æ503 0Æ792 : 0Æ208 )8Æ18 · 10)4 1Æ03 · 10)4 0Æ041
0Æ10 )8Æ54 · 10)4 1Æ05 · 10)3 0Æ055 4Æ54 · 10)3 1Æ56 · 10)2 0Æ519 0Æ799 : 0Æ201 )7Æ69 · 10)4 1Æ06 · 10)3 0Æ054
1Æ00 )1Æ26 · 10)3 1Æ02 · 10)2 0Æ046 )9Æ34 · 10)3 1Æ65 · 10)1 0Æ520 0Æ797 : 0Æ203 )1Æ25 · 10)3 1Æ02 · 10)2 0Æ045

0Æ75 0Æ01 0Æ750 9Æ90 · 10)5 1Æ000 0Æ749 1Æ71 · 10)3 1Æ000 0Æ812 : 0Æ188 0Æ750 9Æ95 · 10)5 1Æ000
0Æ10 0Æ751 1Æ07 · 10)3 1Æ000 0Æ758 1Æ94 · 10)2 0Æ999 0Æ799 : 0Æ201 0Æ751 1Æ07 · 10)3 1Æ000
1Æ00 0Æ753 1Æ08 · 10)2 1Æ000 0Æ744 2Æ23 · 10)1 0Æ952 0Æ793 : 0Æ207 0Æ753 1Æ08 · 10)2 1Æ000

0Æ90 0Æ01 0Æ900 1Æ03 · 10)4 1Æ000 0Æ901 2Æ47 · 10)3 1Æ000 0Æ782 : 0Æ218 0Æ900 1Æ03 · 10)4 1Æ000
0Æ10 0Æ901 1Æ06 · 10)3 1Æ000 0Æ896 1Æ83 · 10)2 0Æ999 0Æ809 : 0Æ191 0Æ901 1Æ07 · 10)3 1Æ000
1Æ00 0Æ902 1Æ06 · 10)2 1Æ000 0Æ914 2Æ37 · 10)1 0Æ966 0Æ807 : 0Æ193 0Æ902 1Æ07 · 10)2 1Æ000

Column headers are as in Tables 1, 3 and 5.
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hold, or PGLS, when the assumptions of PGLS hold. How-

ever, the advantage of PGLSk is that it very nearly recovers

the performance of the best model when no particular level

of phylogenetic signal in the residual error can be safely

assumed a priori (as will most often be the case for empiri-

cal studies).

Discussion

Over the past 20 years the phylogenetic regression has become

among the most commonly applied methods in comparative

biology (Felsenstein 1985; Grafen 1989). However, its assump-

tions are still not widely understood (Rohlf 2006). To examine

how and when it should be applied I will review, in turn, each

of the simulated scenarios for this study.

PHYLOGENETIC SIGNAL IN THE INDEPENDENT

VARIABLE

When the generating model was one in which I simulated phy-

logenetic signal in the independent variable, but uncorrelated

residual error in Y, a phylogenetic regression is not necessary.

In this case, the assumption of independent errors holds and

OLS is a perfectly appropriatemethod for fitting the regression

model.

Consistent with this assertion, I found that OLS overwhelm-

ingly provided a better regression slope estimate (84Æ2% of the

time, averaged across simulation conditions; Fig. 2) than

PGLS. Furthermore, the variance among simulations in the

regression estimator was much higher for PGLS than OLS (on

average 32Æ9 times higher; Table 1). However, I also found that

type I error was not elevated for PGLS when the generating

regression slope was b1 = 0Æ00 (Table 1). This interesting

result will be discussed further below. Performance of the phy-

logenetic regression was fully recovered by simultaneously esti-

mating the k parameter of Pagel (1999; Revell 2009), as

discussed in the ‘Materials and methods’. In general, the fitted

value of k for the regression model was very low (close to zero;

Table 2) in this case, which makes PGLSk nearly equivalent to

OLS thus explaining its good statistical performance here.

NO PHYLOGENETIC SIGNAL IN THE INDEPENDENT

VARIABLE

When I used a generating model for simulation with no phylo-

genetic signal in the independent variable, but phylogenetic sig-

nal in the residual error for the dependent variable, a

phylogenetic regression is appropriate. Here, the standard

OLS assumption of independent errors is not true, and thus

OLS is not an appropriate method to fit our bivariate regres-

sion model and PGLS should be used. As such, I was not sur-

prised to find that PGLS regression yielded a better estimate of

the generating regression slope for the vast majority (84Æ5%;

Fig. 2) of simulated data sets across all simulation conditions.

In these simulations, however, I also found that oftentimes

phylogenetic signal forX andYwas low by both of our chosen

metrics (the k statistic of Pagel 1999; and the K statistic of

Blomberg, Garland & Ives 2003; Table 4). Furthermore, for

all generating conditions except b1 = 0Æ00, Pearson and

Spearman correlation-based diagnostic analysis of the inde-

pendent contrasts suggested that contrasts had been inade-

quately standardized. Thus, for data generated under these

conditions, standard diagnostics computed for the dependent

and independent variables separately might be interpreted to

suggest that standard PGLS or contrasts are inappropriate,

even though they are called for in this case. As before, type I

error of OLS was not inflated over its nominal level, a result

which I will discuss at greater length below.

PHYLOGENETIC SIGNAL IN THE INDEPENDENT

VARIABLE, AND THE RESIDUALS

This is the traditional Brownian motion model for character

evolution in X and Y. In this case, it should be no surprise

that PGLS outperforms OLS, producing a parameter esti-

mate for the regression slope that is closer to its generating

value in 77Æ8% of simulations, averaged across conditions

(Table 5; Fig. 2). I also found that type I error was consider-

ably inflated if OLS was used, which is also consistent

with earlier studies (e.g. Rohlf 2006; Revell 2009). Under

these simulation conditions, all phylogenetic diagnostics

Table 8. Phylogenetic diagnostics forX, Y and the bivariate regression model. Here, neitherX nor the model residuals have been simulated with

phylogenetic signal.

b1 r2
e kðXÞ kðYÞ kðY � XÞ K(X) K(Y) r(X)

Error ⁄
power r(Y)

Error ⁄
power q(X)

Error ⁄
power q(Y)

Error ⁄
power

0Æ00 0Æ01 0Æ016 0Æ014 0Æ015 0Æ066 0Æ066 )0Æ520 1Æ000 )0Æ521 1Æ000 )0Æ549 1Æ000 )0Æ548 1Æ000
0Æ10 0Æ016 0Æ014 0Æ015 0Æ067 0Æ068 )0Æ520 1Æ000 )0Æ523 1Æ000 )0Æ550 1Æ000 )0Æ549 1Æ000
1Æ00 0Æ015 0Æ016 0Æ016 0Æ068 0Æ068 )0Æ521 1Æ000 )0Æ519 1Æ000 )0Æ546 1Æ000 )0Æ545 1Æ000

0Æ75 0Æ01 0Æ014 0Æ015 0Æ013 0Æ067 0Æ067 )0Æ519 1Æ000 )0Æ519 1Æ000 )0Æ546 1Æ000 )0Æ546 1Æ000
0Æ10 0Æ015 0Æ014 0Æ016 0Æ067 0Æ067 )0Æ520 1Æ000 )0Æ519 1Æ000 )0Æ546 1Æ000 )0Æ547 1Æ000
1Æ00 0Æ015 0Æ013 0Æ015 0Æ066 0Æ066 )0Æ518 1Æ000 )0Æ519 1Æ000 )0Æ544 1Æ000 )0Æ545 0Æ999

0Æ90 0Æ01 0Æ014 0Æ014 0Æ016 0Æ066 0Æ067 )0Æ522 1Æ000 )0Æ522 1Æ000 )0Æ548 1Æ000 )0Æ548 1Æ000
0Æ10 0Æ013 0Æ015 0Æ013 0Æ068 0Æ068 )0Æ521 1Æ000 )0Æ521 1Æ000 )0Æ547 0Æ999 )0Æ548 1Æ000
1Æ00 0Æ013 0Æ016 0Æ015 0Æ066 0Æ066 )0Æ520 1Æ000 )0Æ517 1Æ000 )0Æ549 1Æ000 )0Æ546 1Æ000

Column headers are as in Tables 2, 4 and 6.
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(phylogenetic signal, Pearson and Spearman correlation

diagnostics on the contrasts) suggest that the Brownian

motion is an appropriate model for evolution and that the

phylogenetic regression is indicated.

NON-PHYLOGENETIC INDEPENDENT VARIABLE AND

ERROR

When I simulated data for X and residual error in Y that were

entirely non-phylogenetic, I found that OLS was vastly supe-

rior to PGLS in both estimation and hypothesis testing, with

PGLS showing severely inflated type I error for b1 = 0Æ00
(Table 7). Unsurprisingly, estimated phylogenetic signal was

invariably low and significant negative Pearson and Spearman

rank correlations between the absolute values of the indepen-

dent contrasts and the square roots of their expected variances

suggested inadequate standardization in the contrasts proce-

dure (Table 8).

DIAGNOSTICS AND THE PHYLOGENETIC REGRESSION

I found mixed results with regard to diagnostics and the phy-

logenetic regression. Certainly, as in Table 6, when all diag-

nostics indicated high phylogenetic signal for the

independent and dependent variables considered separately,

as well as no relation between the absolute value of indepen-

dent contrasts and their expected variances, I found that the

phylogenetic regression as traditionally applied performed

extremely well. However, I also identified conditions in

which phylogenetic signal for X and ⁄or Y was high, and in

which correlation-based diagnostics generally indicated that

the phylogenetic regression was appropriate – and yet resid-

ual error was uncorrelated among species, and thus OLS

(not PGLS) was called for (e.g. Table 2). In addition, in

some cases, I found conditions in which phylogenetic signal

was low, correlation-based contrasts analysis indicated inade-

quate standardization, and yet the phylogenetic regression

was fully appropriate (e.g. Table 4).

These results suggest that the tenet of this article, that assess-

ing phylogenetic signal in the original variables is generally

insufficient to diagnose whether the phylogenetic regression is

appropriate, is correct. Instead, researchers should consider

simultaneously fitting a model for phylogenetic signal in the

residual error along with their regressionmodel, as I have done

using the parameter k of Pagel (1999), above.

SIMULTANEOUS ESTIMATION OF k

It is possible to optimize the error structure of the residuals

simultaneously with fitting the regression model via least

squares (e.g. Grafen 1989). As noted in the preceding para-

graphs, this approach seems preferable in general, and in this

study, I found that the performance of the best model (OLS or

PGLS, depending on the simulation conditions) could be fully

or nearly fully recovered through simultaneous optimization

of the k parameter of Pagel (1999) (Tables 1, 3, 5, 7). However,

this method has its own limitations. In particular, there are

many ways in which the true error structure of our residuals

could differ from the hypothesized error structure given by the

tree (e.g. Fig. 1a) other than that described by k (e.g. Blom-

berg, Garland & Ives 2003; Hansen, Pienaar & Orzack 2008;

Lavin et al. 2008). To the end of obtaining an even better fit,

Pagel (1999) proposed several other parameters which can be

simultaneously optimized. Furthermore, Garland, Harvey &

Ives (1992) and others have shown that many analogous trans-

formations can be achieved by manipulating the branch

lengths of the tree in various ways.

TYPE I ERROR OF THE ‘WRONG’ REGRESSION

ESTIMATOR

For some of the simulation conditions of this study, I found

that the incorrect regression estimator still yielded appropriate

type I error rates for the generating condition of b1 = 0Æ00.
This result is somewhat perplexing. In general, I found that the

incorrect estimation procedures overwhelmingly lead to esti-

mated regression coefficients that were farther from the gener-

ating values than estimates obtained using the correct

procedure (e.g. Tables 1, 3, 5, 7; Fig. 2). Thus, one might

naively suspect that for a generating slope of b1 = 0Æ00, these
coefficients might also more often be found to be significantly

different than 0Æ00. This is not true because the estimated stan-

dard error for the incorrect model in these cases (in particular,

phylogenetic signal in X, but not the model residuals; and no

phylogenetic signal inX, but in the residuals) increases in direct

proportion to the square root of the variance in the estimated

regression slopes among simulations (Table 9). In fact, this is

generally a property of regression tests that yielded appropriate

type I error; but not for tests that produced error inflated over

its nominal level (Table 9). This result is also somewhat

encouraging, because it suggests that although type I error for

Table 9. The ratio of the square root of the variance of estimates of

b1 across simulation conditions by both OLS and PGLS; and the

mean ratio of the estimated standard errors for b1 byOLS and PGLS.

If our estimate of the standard error captured the uncertainty in b̂1,

then the two ratios should scale proportionally (as they do for the first

two simulation conditions). When the data were generated with

phylogenetic signal in X and the model residuals, our estimated

standard errors for b1 by OLS was too low; conversely, when the data

were generated without signal, our estimated standard errors for b1
by PGLSwere too low. This is why type I errors are inflated when the

incorrect estimation procedure is used in each case. Standard

deviations of the mean ratios among simulation conditions are given

in parentheses after each entry

Simulation model SDðb̂OLSÞ=SDðb̂PGLSÞ SEðb̂OLSÞ=SEðb̂PGLSÞ

Phylogenetic X;

non-phylogenetic e
0Æ178 (0Æ023) 0Æ224 (0Æ005)

Non-phylogenetic X;

phylogenetic e
3Æ768 (0Æ144) 3Æ882 (0Æ033)

Phylogenetic X and e 2Æ631 (0Æ105) 1Æ000 (0Æ005)

Non-phylogenetic

X and e
0Æ234 (0Æ018) 1Æ001 (0Æ011)
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the phylogenetic regression can be elevated under some simula-

tion conditions (e.g. Table 7), these are not conditions in which

diagnostic tests on the original variables or independent con-

trasts would generally suggest that the phylogenetic regression

was appropriate.

GENERAL RECOMMENDATIONS

The general recommendations that can be derived from this

study are straightforward. Firstly we cannot diagnose whether

a phylogenetic regression is appropriate based on univariate

measures of phylogenetic signal calculated on the individual

variables in our analysis. Although such measures might be

interesting for other reasons (e.g. Freckleton, Harvey & Pagel

2002; Blomberg, Garland & Ives 2003; but see Revell, Harmon

& Collar 2008), they are not useful in assessing whether or not

a phylogenetic regression is appropriate. Secondly, the suitabil-

ity of a phylogenetic regression should actually be diagnosed

by estimating phylogenetic signal in the residual deviations of

Y given our predictors (X1,X2, etc.).However, thirdly, an alter-

native approach, which I recommend, is the simultaneous esti-

mation of phylogenetic signal and the regression model. One

example (Pagel’s k) is provided herein; although many other

potentially suitable transformations are also available (e.g.

Garland, Harvey & Ives 1992; Pagel 1999; Blomberg, Garland

& Ives 2003; Hansen, Pienaar & Orzack 2008; Lavin et al.

2008).

Conclusions

Ordinary least squares regression assumes that the residual

error in our regression model is independent among observa-

tions. Commonly, this will be an incorrect assumption for vari-

ous types of data, particularly for data from species related by

a phylogenetic tree (Felsenstein 1985; Grafen 1989; Harvey &

Pagel 1991). The phylogenetic regression (here, PGLS, but –

equivalently – regression through the origin of independent

contrasts; Felsenstein 1985; Garland & Ives 2000; Rohlf 2001)

can be used for data from species in which the residual error is

distributed with covariances between samples that are propor-

tional to the amount of shared branch length from the root

node of the tree to the common ancestor of each pair of species

in the sample (Fig. 1b; Rohlf 2001). However, as a means of

diagnosing a priori whether or not a phylogenetic regression is

appropriate, it has become common practice to either: com-

pute independent contrasts-based diagnostics, such as the cor-

relation between the absolute values of standardized contrasts

and the square roots of their expected variances; or to estimate

phylogenetic signal in the independent and dependent vari-

ables of our model. In this study, I have shown that these mea-

sures can sometimes be inadequate, and even misleading,

regardingwhether a phylogenetic regression is called for. How-

ever, I have also shown that under conditions in which phylo-

genetic signal in the independent variable is high, but the

phylogenetic regression is inappropriate (or vice versa), type I

error is not inflated over its nominal level, even though the

accuracy of parameter estimation is substantially decreased.

Finally,Ishowedthatsimultaneouslyoptimizingtheerrorstruc-

ture of our generalized least squares model along with the

parametersof themodel canbeauseful approachwhen the suit-

abilityofourdataforphylogeneticregression is not known.
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