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Summary

1. Modern phylogenetic comparative biology uses data from the relationships between species (phylogeny) com-

bined with comparative information for phenotypic traits to draw model-based statistical inferences about the

evolutionary past. Recent years have seen phylogeny methods for evolutionary inference become central in the

study of organic evolution.

2. Here, I present two different graphical methods for visualizing phenotypic evolution on the tree.Method 1 is a

new approach for plotting the posterior density of stochastically mapped character histories for a binary (two-

state) phenotypic trait on a phylogeny. Method 2 is a closely related technique that uses ancestral character esti-

mation to visualize historical character states for a continuous trait along the branches of a tree.

3. One shortcoming ofMethod 2 is that bymapping the point estimates of ancestral states along the branches of

the tree, we have effectively ignored the uncertainty associated with ancestral character estimation of continuous

traits. To alleviate this issue, I propose a new method for visualizing ancestral state uncertainty using a type of

projection of the tree intomorphospace called a ‘traitgram.’

4. All of these approaches should prove useful in summarizing complex comparative inferences about ancestral

character reconstruction. They are implemented in the freely available and open-source R phylogenetics package

‘phytools.’

Key-words: ancestral states, comparative method, interspecific data, stochastic character mapping,

traitgram

Introduction

Evolutionary biology is a historical discipline: large evolution-

ary changes take place over long time-scales and thus cannot

be studied directly. One of themost important tools in the arse-

nal of scientists studying the evolutionary past is phylogenetic

comparative biology (Felsenstein 1985, 2004; Harvey & Pagel

1991). Phylogenetic comparative biologists combine the phy-

logeny (that is, one or multiple estimates of the relationships

and divergence times between taxa) with data for the pheno-

typic traits of species to make inferences about evolutionary

processes in deep time (Harmon et al. 2010;Mahler et al. 2010;

O’Meara 2012). In recent years, phylogenetic comparative

approaches have become central in evolutionary biology

(Miles & Dunham 1993; Freckleton, Harvey & Pagel 2002;

Losos 2011).

One component of studying the evolutionary past is recon-

structing the past phenotypes of extinct ancestral species from

the trait values of their extant descendants (Huey & Bennett

1987; Maddison 1991; Schluter et al. 1997; Pagel 1999). Mod-

ern approaches for ancestral character reconstruction treat the

states at ancestral nodes as parameters or variables in a statisti-

cal model and use techniques such as maximum likelihood or

Bayesian MCMC to fit the model of evolution and estimate

ancestral character values. For example, using a method called

stochastic character mapping, developed by Neilsen (2002;

Huelsenbeck, Nielsen & Bollback 2003), we can sample possi-

ble histories of a discretely valued character from their

Bayesian posterior probability distribution. A single such char-

acter history is meaningless; however, in aggregate, a large

number of discrete stochastic character maps (say, 100 to

1000) can be used to estimate the history of a discretely valued

character trait evolving on the tree. In addition, the variability

among sampled histories provides ameasure of the uncertainty

we have about trait evolution in our clade of interest (e.g.

Collar et al. 2009;Kelly, Near &Alonzo 2012).

A stochastic character mapping analysis will result in a large

number of discrete character histories on a phylogeny. These

data are difficult to visualize in a figure for publication. For

instance, one might display the result of one or a small number

of representative stochastic histories (e.g. Collar et al. 2009;

Price et al. 2013); but this ignores the fact that the stochastic

maps should be considered in aggregate. Alternatively, one

might compute the marginal probability of the character being

in each state at all internal nodes of the tree (e.g. Kelly, Near &

Alonzo 2012); but this ignores the trait values for the character

along internal edges, which represent an important component

of stochastic maps. Both of these approaches have been taken

in recent empirical studies.

In this note, I present a new approach for visualizing the

posterior density of a binary character state on a phylogenetic*Correspondence author. E-mail: liam.revell@umb.edu
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tree from stochastic mapping. In addition, I present a closely

related, visually similar technique for mapping the estimated

state of a continuous character on the tree. I have illustrated

the two methods with an empirical analysis of published data.

R is a programming language and scientific computing envi-

ronment with a large and growing community of users in phy-

logenetic biology (R Development Core Team 2013). Both of

these methods are implemented in the freely available, multi-

functional, open-source R phylogenetics package, ‘phytools’

(Revell 2012). phytools is available from the Comprehensive R

ArchiveNetwork, CRAN.

Methods and results

In this note, I present two closely related approaches for visual-

izing trait evolution on a phylogeny. Method 1 is a technique

for visualizing the posterior density of character histories

obtained by aggregating the results from a set of stochastic

character maps. Method 2 is a related approach to graph the

reconstructed states for ancestral species in a continuous char-

acter along the edges and nodes of a phylogeny. I will describe

each method and illustrate its use with an empirical example

frompublished studies, in the sections below.

Visualizing the aggregate result of stochastic mapping –

Method 1 involves aggregating the results of a large number of

stochastic character maps. For example, Fig. 1 shows three

of 1000 stochastic character maps for the binary character of

piscivory (red) vs. non-piscivory (blue) in the phylogeny of

sunfishes (Centrarchidae; Near, Bolnick & Wainwright 2005;

Collar et al. 2009; Revell &Collar 2009).

Stochastic character mapping is a technique whereby possi-

ble character histories are sampled in proportion to their prob-

ability. Each sample contains a specific, unique and subtly or

markedly different character history – for instance, the first

two trees of Fig. 1 imply that piscivory was the ancestral feed-

ing mode in centrarchids; whereas the third stochastic map

implies non-piscivory at the root node of the tree. Conse-

quently, stochastic character maps are only meaningful when

considered in aggregate.

Here, I propose a new approach for visualizing the aggre-

gate result from stochastic character mapping of a binary trait.

According to this procedure, we finely fraction the branches of

the tree and then compute the posterior probability of the state

being in either condition ‘0’ or condition ‘1’ for each fraction as

the relative frequency across all stochastic maps. When a frac-

tion is bisected by a state change, the two states both contribute

to the cumulative probability –weighted by the relative branch

length spent in each state. We can then plot these probabilities

on the branches of the tree using a colour map to translate the

probability to a plotted colour. The result (so long as a suffi-

cient number of stochastic histories are generated) is that the

probability density appears to change continuously along the

branches of the tree. This method is implemented in the func-

tion densityMap of the R phylogenetics package, phytools

Acantharchus pomotis
Lepomis gibbosus
Lepomis microlophus
Lepomis punctatus
Lepomis miniatus
Lepomis auritus
Lepomis marginatus
Lepomis megalotis
Lepomis humilis
Lepomis macrochirus
Lepomis gulosus
Lepomis symmetricus
Lepomis cyanellus
Micropterus cataractae
Micropterus coosae
Micropterus notius
Micropterus treculi
Micropterus salmoides
Micropterus floridanus
Micropterus punctulatus
Micropterus dolomieu
Centrarchus macropterus
Enneacanthus chaetodon
Enneacanthus gloriosus
Enneacanthus obesus
Pomoxis annularis
Pomoxis nigromaculatus
Archoplites interruptus
Ambloplites ariommus
Ambloplites rupestris
Ambloplites cavifrons
Ambloplites constellatus

Fig. 1. A sample of three stochastic character maps for the evolution of feedingmode in Centrarchidae. Phylogeny and data are fromNear, Bolnick

&Wainwright (2005) andCollar et al. (2009).
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(Revell 2012). I have applied the method to the full sample of

1000 stochastically mapped trees for feeding mode in Centrar-

chidae, of which just three stochastic maps are given in Fig. 1.

The result is shown in Fig. 2. The horizontal bar at the bottom

of the graph in Fig. 2 is at the same time both a legend and

scale: the colour map translates the heat colours (blue through

red) into the posterior probability of feeding mode being in the

condition ‘piscivory’; and the total length of the bar also pro-

vides a scale for the branch lengths of the tree. Figure 2 sug-

gests that the ancestral feeding mode should be considered

highly uncertain for about the first 1/3 of the tree; but this was

followed by multiple acquisitions of piscivory or non-piscivory

or both. This visualization, particularly the uncertain condi-

tion of many ancestral branches in the tree, is more revealing

that any single stochastic map considered in isolation. Stochas-

tic character mapping can be conducted in R using the

phytools function make.simmap (Revell 2012); or with the

stand-alone Mac OS program SIMMAP (Bollback 2006).

(For a description of stochastic mapping in phytools, please

refer to the phytools documentation.) Stochastically mapped

phylogenies simulated using SIMMAP v1.0 or v1.5 can easily

be read into the R environment using the phytools function

read.simmap (Revell 2012).

Visualizing ancestral estimates for continuous traits –

WhereasMethod 1 is designed to aggregate the results of many

discrete character histories, Method 2 uses a visually similar

approach to plot the estimated history of a continuously val-

ued trait on the tree. Here, we first estimate the ancestral char-

acters at internal nodes using, for instance, maximum

likelihood (ML; Schluter et al. 1997). For simplicity, I

assume Brownian motion as a model for trait evolution

(Cavalli-Sforza & Edwards 1967; Felsenstein 1973, 1985);

however, the method could be adapted to other evolutionary

models such as the Ornstein–Uhlenbeck model (Hansen 1997;

Butler & King 2004). Next, we finely fraction all edges (as in

Method 1), and then compute the state estimates at the mid-

point of each fraction via interpolation. Again, this creates the

visual appearance of continuous colour change along the edges

of the tree. I interpolated the internal states along branches

using equation (3) of Felsenstein (1985). Here, the target

ancestral value at some arbitrary point along an edge in the

tree, â, is a function of the observed or ML estimated states at

the subtending nodes or tips i and j (xi and xj), as well as the

phylogenetic distances to nodes i and j (vi and vj):

â ¼ xi=vi þ xj=vj
1=vi þ 1=vj

:

Figure 3 shows an example analysis of the evolution of body

size (log-transformed snout-to-vent length, SVL) in 100 species

of Greater Antillean Anolis lizards (Mahler et al. 2010). As in

Fig. 2, the horizontal bar is both a legend and scale. The colour

map represents observed and reconstructed values for SVL on

the tree. Red colours correspond with relatively low values for

SVL; whereas green through blue colours represent larger

observed and reconstructed trait values. This visualization can

be reproduced using the phytools function contMap.

One obvious shortcoming of this approach is that by plot-

ting only the point estimate of phenotype at the nodes and

along the branches of the tree, we are ignoring the considerable

uncertainty that can be inherent in ancestral state estimation

(Schluter et al. 1997; Losos 2011). Figure 4 shows a different

kind of visualization – a type of projection of the phylogenetic

tree into trait space, called a ‘traitgram’ byAckerly (2009), here

performed using a simulated phylogeny and dataset. In a trait-

gram, the vertical position of nodes and edges give known or

estimated phenotypic trait values, while the horizontal position

gives time or patristic distance from the root. Traitgrams have

been used in a number of prior publications (e.g. Ackerly 2009;

Evans et al. 2009). The innovative aspect of Fig. 4 is that in

addition to showing the estimated ancestral values for the phe-

notypic trait, it also shows uncertainty about ancestral states

along branches and at nodes. To do this, I computed the confi-

dence intervals at internal nodes and then linearly interpolated

along branches. Increasing quantiles away from the point

estimate are shown via increased transparency of the plotted

density. This visualization is implemented as a method

of the phytools function fancyTree, using type =

‘phenogram95’. fancyTree calls the phytools function

phenogram internally. One nice aspect of phenogram over

other implementations of traitgramplotting (e.g. Kembel et al.

2010) is that phenogram can accept user-supplied penalties

(or ‘costs’) for label overlap and then uses numerical methods
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Micropterus notius
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0 1PP(state = 1)

length = 0·15

Fig. 2. The results from 1000 stochastic character maps (the three

shown in Fig. 1, plus 997 others) displayed in aggregate. The colour of

edges in the tree gives the posterior probability (computed as the rela-

tive frequency across stochastic maps) of each feeding mode through

the history of the clade. Red indicates high posterior probability of

piscivorous feedingmode. The length of the legend also gives a scale for

the branch lengths of tree, in this case in units of substitution per site

for five mitochondrial and four nuclear genes (Near, Bolnick &Wain-

wright 2005).
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to optimize the spacing of tip labels on the trait axis. This can

be very helpful because multiple species often have similar trait

values (Fig. 4), which can make their tip labels difficult to read

if plotted conventionally (i.e. directly adjacent to the tips).

Discussion

Herein, I present two new methods, implemented in computer

software, to visualize trait evolution on a phylogeny. The first

of these, Method 1, is an approach to aggregate the results

from a procedure called stochastic character mapping. In sto-

chastic character mapping, we sample character histories (such

as those shown in Fig. 1) in proportion to their probability

conditioned on a model (Neilsen 2002; Huelsenbeck, Nielsen

& Bollback 2003). These character-mapped phylogenies can

then be used in subsequent analyses, such as in model-fitting

for comparative biology (O’Meara et al. 2006) or in computing

the mean and distribution of trait changes on the tree (e.g.

Kelly, Near&Alonzo 2012). Thus, for instance, onemight fit a

model of evolution to each tree in the set ofmappings, and then

compute themean result across trees (Collar et al. 2010; Revell

2013). One difficulty with these mappings is that they are rela-

tively meaningless in isolation and should be considered in

aggregate. There is no difficulty for analytic techniques such as

those described previously, but presents a challenge for

visualization. The typical response in prior studies has been to

plot one or a small number of stochastic maps; or to compute

and plot the posterior probability at nodes, but ignore state

A. darlingtoni
A. aliniger
A. singularis
A. chlorocyanus
A. coelestinus
A. occultus

A. vanidicus
A. argenteolus
A. lucius
A. bartschi
A. vermiculatus
A. baracoae
A. noblei
A. smallwoodi
A. luteogularis
A. equestris
A. monticola
A. bahorucoensis
A. dolichocephalus
A. hendersoni

A. guazuma
A. placidus
A. sheplani
A. alayoni
A. angusticeps
A. paternus
A. alutaceus
A. inexpectatus
A. clivicola
A. cupeyalensis
A. cyanopleurus
A. alfaroi
A. macilentus

A. cuvieri
A. barbatus
A. porcus
A. chamaeleonides
A. guamuhaya
A. altitudinalis
A. oporinus
A. isolepis
A. allisoni
A. porcatus
A. argillaceus
A. centralis
A. pumilis
A. loysiana

A.whitemani
A. haetianus
A. breslini
A. armouri
A. cybotes
A. shrevei
A. longitibialis
A. strahmi
A. marcanoi
A. baleatus
A. barahonae
A. ricordii
A. eugenegrahami
A. christophei

A. cristatellus
A. brevirostris
A. caudalis
A. marron
A. websteri
A. distichus
A. barbouri
A. alumina
A. semilineatus
A. olssoni
A. etheridgei
A. fowleri
A. insolitus
A.

A. guafe
A. garmani
A. opalinus
A. grahami
A. valencienni
A. lineatopus
A. reconditus
A. evermanni
A. stratulus
A. krugi
A. pulchellus
A. gundlachi
A. poncensis
A. cooki

A. ahli
A. allogus
A. rubribarbus
A. imias
A. sagrei
A. bremeri
A. quadriocellifer
A. ophiolepis
A. mestrei
A. jubar
A. homolechis
A. confusus

g

5·113·46 Trait value

length = 0·5

Fig. 3. Ancestral character estimation of body size (log-transformed snout-to-vent length) along the branches and nodes of the tree for Greater

Antillean Anolis lizards. The total tree length was arbitrarily rescaled to unit length in this analysis, following the original authors. Phylogeny and

data are fromMahler et al. (2010).
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changes that occur along the branches of the tree (e.g. Collar

et al. 2009, 2010; Kelly, Near & Alonzo 2012; Price et al.

2013). In this article, I illustrate a new method for visualizing

the aggregate result of stochastic mapping of a binary

character in which wemap posterior density on the tree using a

continuous colour gradient.

An inherent shortcoming of this method is that it is only sen-

sible for a binary trait – in which case the plotted colour is a

proxy for the probability of being in an identified condition

(such as the feedingmode ‘piscivory’). Formultistate character

traits, options for visualizations of this type are less obvious;

however, it would be no trouble to plot the posterior probabil-

ity of being in any specific discrete character state. For

instance, given nucleotide data, we could use this method to

plot the ‘probability of T’ vs. ‘the probability of not-T’ on the

branches of the tree, even though there are actually four dis-

tinct nucleotide states. One option for plotting the probability

of three states is to use saturation in three dimensions on an

RGB (‘red-green-blue’) colour model. This may be incorpo-

rated into a future version of ‘phytools,’ but extension to four

ormore trait values is not obvious.

Method 2 is a closely related visualization technique, but for

continuous trait evolution. Here, I computed theML estimates

at internal nodes, and then I interpolated ancestral condition

along the branches of the tree using equation (3) of Felsenstein

(1985). Visualizing quantitative trait evolution for a single

character can alternatively be performed using the ‘traitgram’

approach in which the vertical dimension of a phylogeny is

projected onto a phenotypic trait axis (e.g. Fig. 4). The

horizontal dimension is time, and edges connect species trait

values to the trait values of their hypothesized ancestors (Ack-

erly 2009; Kembel et al. 2010; Revell 2012). The trouble with

this method is that the phylogenetic relationships of species in

a traitgram can be difficult to discern, particularly when species

in different parts of the phylogeny have similar phenotypes.

The new visualization technique presented here alleviates this

difficulty by simultaneously portraying trait evolution and

representing the phylogeny in conventional way.

As noted earlier, a significant shortcoming of this approach

is that (by mapping the point estimate of ancestral traits) we

are ignoring the considerable uncertainty that invariably

accompanies said estimates. It is not clear how to incorporate

measures of uncertainty without totally obfuscating the clarity

of visualizations such as that of Fig. 3. To address this concern,

I propose a new method to graph uncertainty in traitgrams.

This is illustrated in Fig. 4 with simulated data. Unfortunately,

this visualization is still limited by the difficulty traitgrams pose

in discerning phylogenetic relationships, as described above.

All the plotting techniques described in this article are imple-

mented in the open-source R phylogenetics package ‘phytools’

(Revell 2012). Phylogenetic comparative biology in R has

exploded in recent years, with many new packages and func-

tions (e.g. Harmon et al. 2008; Kembel et al. 2010; Boettiger,

Coop&Ralph 2012; Fitzjohn 2012).Most, including phytools,

rely extensively on the important core phylogenetics package,

‘ape’ (Paradis, Claude& Strimmer 2004; Paradis 2012).

Phylogenetic comparative biology has become central in the

study of evolution over the past 25 years. Many methodologi-

cal advances have beenmade, but these methods also pose new

and interesting visualization challenges. Here, I describe sev-

eral methods for visualizing ancestral states on the branches

and nodes of a phylogeny. These approaches add considerably

to our set of plotting techniques for ancestral character recon-

struction on phylogenies.
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