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Phylogenetic comparative biology has progressed
considerably in recent years (e.g., Butler and King
2004; Rabosky 2006; Bokma 2008; Alfaro et al. 2009;
Stadler 2011; Slater et al. 2012). One of the most
important developments has been the application of
likelihood-based methods to fit alternative models for
trait evolution in a phylogenetic tree with branch lengths
proportional to time (e.g., Butler and King 2004; O’Meara
et al. 2006; Thomas et al. 2006; Revell and Collar 2009;
Beaulieu et al. 2012). An important example of this type
of method is O’Meara et al. (2006) “noncensored” test
for variation in the evolutionary rate for a continuously
valued character trait through time or across the
branches of a phylogenetic tree (also see Thomas et al.
2006 for a closely related approach). According to this
method, we first hypothesize evolutionary rate regimes
on the tree (called “painting” in Butler and King 2004);
and then we fit an evolutionary model, specifically the
popular Brownian model (Cavalli-Sforza and Edwards
1967; Felsenstein 1973, 1985), in which the instantaneous
variance of the Brownian random diffusion process
has different values in different parts of the phylogeny
(O’Meara et al. 2006).

In their original article, O’Meara et al. (2006) did not
focus specifically on how to hypothesize evolutionary
regimes on the tree. The authors did, however, suggest
that to test the hypothesis that a discrete character state
had influenced the rate of a continuous character, one
could use the approach of (Nielsen 2002; Huelsenbeck
et al. 2003; Bollback 2006) to first stochastically map the
discretely valued trait, and then “test to see whether
the portions of the tree with one state for the discrete
character have a different rate of evolution for the
continuous character than portions of the tree to which
the other discrete state has been mapped” (O’Meara et al.
2006, p. 931). Indeed, this has become common practice
for this and other closely related methods (e.g., Collar
et al. 2009, 2010; Revell and Collar 2009; Martin and
Wainwright 2011; Price et al. 2011). Normally, then, the
set of evolutionary rate estimates from the stochastically
mapped trees are averaged across all the trees in the
sample. This is presented as a method of obtaining rate
estimates that “integrate over uncertainty in...ancestral
states” (Collar et al. 2010, p. 1035). Figure 1 illustrates this
analysis pipeline.

a)

b)

c)

d)

FIGURE 1. Typical pipeline for the analysis of evolutionary rates. a)
Phylogeny with data for a binary state (here coded “1” and “2”) and a
continuously valued trait. b) Stochastically mapped character histories
for the binary trait on the tree. c) ML evolutionary rates estimated for
each tree and mapped character history. d) The average rates across
100 simulated histories (97 not shown).

Here, I examine this practice. In particular, I show
that evolutionary rates estimated this way (i.e., by
using maximum likelihood [ML] to fit a multirate
model on each stochastically mapped tree; and then
averaging across trees) are systematically biased to be
more similar to each other than are the underlying
generating parameters. My analysis also reveals that
this effect is dependent on the rate of evolution for
the discrete trait. Specifically, if the rate of evolution
for the discrete character is low then the difference
between the true history and any stochastically mapped

339

 at U
niversity of M

assachusetts at B
oston on February 8, 2013

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


[12:42 28/1/2013 Sysbio-sys084.tex] Page: 340 339–345

340 SYSTEMATIC BIOLOGY VOL. 62

history is generally small. This results in evolutionary
rates for the continuous trait that are estimated with
little bias. Conversely, if the rate of evolution for the
discrete character is very high, then the true and
hypothesized character histories are often extremely
dissimilar, evolutionary rate estimates are biased to
be more similar to each other than their underlying
generating values, and we lose power to distinguish
evolutionary rates on the tree.

SIMULATION AND ANALYSES

To test the hypothesis that the common practice
of fitting a multiple-rate Brownian motion model by
simulating stochastic character maps for a binary
or multistate character and then fitting the model
separately conditioned on each map results in estimated
evolutionary rates that are biased to be more similar to
each other than the generating rates, I conducted the
following experiment. First, I generated 100 stochastic
pure-birth phylogenetic trees and rescaled the trees to
have a total length from the root to any tip of 1.0. On each
tree, I simulated a single character history for a binary
trait evolving on the tree with evolutionary rates q12 =
q21 =q. This history was used as the generating history.
Next, I simulated the evolution of a continuous trait
with rate �2

1 =1.0 on branches (and branch segments)
with state “1” and �2

2 =10.0 and on branches (and branch
segments) with state “2.”

With these data in hand, I replicated our typical data
analysis procedure in two ways. First, I assumed that the
generating history was known without error. This will be
very rare for empirical studies. Using this true character
history, I fit the two-rate continuous character model
using likelihood (following O’Meara et al. 2006). Second,
I assumed the more realistic scenario in which the states
for the discrete and continuous characters at the tips of
the tree are known; but in which the generating history
is not and thus must be estimated from the data. In this
case, for each generating tree and data vector, I simulated
100 stochastic character mapped trees and then fit the
two-rate model to each simulated mapping (e.g., Collar
et al. 2010; Price et al. 2011). To obtain the stochastic
character mapped trees, I sampled character histories
from their conditional posterior distribution, in which
I conditioned on the rate of evolution for the binary trait
being the ML estimate of the rate. (This differs from
the method implemented in Bollback 2006, in which
rates and histories are sampled from their joint posterior
distribution. In a small sample of simulations conducted
using both methods, I did not find any significant effect
on the main result of this study by substituting one
procedure for the other.) Note that I invariably assume
that the tree and branch lengths are known without error.
Although this will not typically be true of empirical
studies, so doing allows us to focus on the effects of
stochastic mapping on parameter estimation in isolation
from other potential sources of error.

To summarize the results from these analyses, I did
the following. For the data fit to the generating (i.e., true)
character history, I computed the mean and variance of
the parameter estimates (and the mean and variance of
their ratio �̂2

2/ �̂2
1) across simulations. I also computed

the standard errors of each rate parameter based on
the Hessian matrix of partial second derivatives of the
likelihood surface at the optimum (H), and calculated
the fraction of times that the true parameter values lay
on the 95% confidence interval for the estimates. An
asymptotic property of likelihood estimation is that our
ML estimates will have a variance–covariance matrix, V,
that is given by V=−H−1 (Lynch and Walsh 1998). To
estimate the standard errors of each of the parameter
in the model, then, one just takes the square root of
diag(V). Based on these standard errors, I also computed
the fraction of times that the 95% confidence intervals for
�2

1 and �2
2 were nonoverlapping. This fraction was used

as a measure of our power to detect the difference in
rate that I simulated. I chose this over the more common
likelihood-ratio test to compare this result with the result
obtained from the stochastic character mapping analysis,
described later.

For the data fit to the simulated character histories,
I computed the mean and variance across simulated
maps for each tree; and then the mean and variance of
these means across simulations. In addition, I counted
the fraction of times that the true parameter values
lay on the 95% confidence interval, as before, and the
fraction of times that the confidence intervals for �2

1 and
�2

2 overlapped. However, in this case I computed the
variance on the estimated parameters as the sum of the
variance among mappings and the mean variance from
the Hessian matrix (e.g., Price et al. 2011). Finally, for each
simulated stochastic character map I also computed the
fractional overlap between the simulated map and the
known true history. This measure is on the interval 0.0 –
1.0, where 0.0 would indicate that the 2 mapped character
histories have no branch length in common, and 1.0
indicating that the character histories are identical. This
fraction can also be interpreted as the probability that,
for any randomly chosen position on our phylogeny, the
states mapped on the true tree and the generating tree
are the same; thus (for a binary character), overlap of
0.5 means that the generating and simulated character
histories have no more mapped branch length in
common than expected by random chance.

For each discrete character simulation, I initiated the
root with state “1” or state “2” with equal probability.
Then, I conducted simulations with the following values
for q12 =q21: 0.5, 1.0, 2.0, 4.0, and 8.0. I chose these
rates not because of any inherent biological realism, but
because exploratory analysis suggested that these rates
span the range of performance for the data analysis
pipeline of Figure 1. In addition, I also rejected (and
repeated) any simulation in which “1” or “2” was
represented by <10 tip species in each 100 taxon tree.
This was to avoid totally confounding the rate of
evolution, q, with the number of tips in each state—
because for a sufficiently low rate of evolution the
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expected number of tips in the derived state can be low.
This rejection procedure only resulted in the rejection
of about 4% of trees for the lowest value of q (for
higher values, the rejection rate was effectively zero).
I conducted all the aforementioned analysis in the
statistical computing environment R (R Development
Core Team 2011) using the packages “geiger” (Harmon
et al. 2008) and “phytools” (Revell 2012). Both of these
libraries depend heavily on the core multifunctional
“ape” phylogenetics package (Paradis et al. 2004; Paradis
2012). All code and simulation results are available
online (doi:10.5061/dryad.8mj66m5c).

RESULTS

When the true character history for the discrete
character is known, then evolutionary rates, �2

1 and �2
2,

are estimated more or less without bias (Fig. 2a,b). The
estimated ratio, �̂2

2/ �̂2
1, seems to be slightly upwardly

biased (Fig. 2c). In contrast, the estimated parameters
are biased when the stochastic character mapping
method is used. The bias is upward for the low rate
(�2

1, in this study) and downward for the high rate (�2
2;

Fig. 2a,b), although in the latter case only for very high
values of q. Similarly, �̂2

2/ �̂2
1 is downwardly biased. This

pattern, like the bias on individual parameter estimates,
is minimal for low q; but increases to become quite
substantial as q grows (Fig. 2c).

I also examined the relationship between “map
overlap” (i.e., the similarity between the simulated and
generating character history for the discrete character)
and bias in the fitted rate ratio. Figure 3a shows the
mean overlap for each simulated tree and data set plotted
against the value of �̂2

2/ �̂2
1 for that simulation. The

pattern that we see across simulations is also often
(but not always) found across different stochastic maps
within a single simulated data set, particularly when
different maps vary widely in their degree of overlap
with the generating character history. Figure 3b shows
this pattern for a representative sample (q=1.0).

In addition, I asked if the 95% confidence intervals for
the fitted model parameter values, �̂2

1 and �̂2
2, included

the generating values, �2
1 and �2

2. Figure 4a shows a
summary of these results. In general, we see that the
95% confidence intervals on the estimated evolutionary
parameters encompassed the true parameter values at
about the same rate for �2

1 and �2
2 when estimated from

the generating tree; but at a rate that decreased for
increasing q on the stochastically mapped trees for �2

1
(but not �2

2 over the range of parameters simulated).
Furthermore, this fraction did not consistently exceed
0.95 across all values of q for either the generating
or stochastically mapped trees (Fig. 4a). The fact that
the confidence intervals did not include the generating
parameter values 95% of the time even when the
true character history was used suggests that the
variances estimated from the Hessian matrix are too
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FIGURE 2. Results from simulation analysis. a) Mean estimated �2
1

for each value of q. Open circles represent estimation from the “true”
(i.e., generating) character history; whereas open triangles represent
the average of 100 stochastic maps. Error bars are standard deviations
across simulations. The horizontal line represents the simulated value
of �2

1. b) Same as (a), but for �2
2. c) Same as (a) and (b), but for the ratio

�2
2/�

2
1.

small. Because the variance–covariance matrix for the
parameters is only asymptotically approximated by the
negative inverse of the Hessian matrix for large sample
sizes (Lynch and Walsh 1998), this result implies that
“large” data sets for comparative studies (i.e., 100 species,
as in this simulation study; e.g., Mahler et al. 2010) might
be insufficient to estimate confidence intervals from the
likelihood surface.

Second, I asked if bias in rate estimation resulted
in a decrease in power to detect true differences in
evolutionary rate. Figure 4b shows the probability of
detecting a difference in the estimated evolutionary
rates (the power) for each value of q. This was assessed
by identifying simulations with nonoverlapping 95%
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confidence intervals on �̂2
1 and �̂2

2. I used this
procedure rather than a likelihood-ratio test because
each stochastically mapped history produces a different
likelihood ratio and P-value; however as both procedures
are based on asymptotic properties of the likelihood

surface, I expect their results to be similar. I found that
power is high for both mapped and generating trees for
low q, but decreases substantially on the mapped trees,
but not on the generating trees, as q is increased (Fig. 4b).

DISCUSSION

An important step forward in the phylogenetic
comparative analysis of continuously valued traits has
been the development of likelihood-based methods
that allow for different evolutionary parameters (e.g.,
rate, selective optimum) to assume differing values on
different parts of a phylogeny (Butler and King 2004;
O’Meara et al. 2006; Thomas et al. 2006; Revell and
Collar 2009; Beaulieu et al. 2012). However, a typical
requirement of these methods is that we specify regimes
a priori, usually on the basis of information external to
our continuous trait data (but see Eastman et al. 2011;
Revell et al. 2012). With increasing regularity, researchers
are using the method of stochastic character mapping
(Nielsen 2002; Huelsenbeck et al. 2003) to simulate a
sample of possible character histories for a discretely
valued hypothesized evolutionary regime (e.g., habitat
or geographic region), and then fitting the model to each
tree in this sample. This analysis pipeline is illustrated
in Figure 1.

In this article, I show that this method will produce
evolutionary parameters (in this case, instantaneous
rates for the Brownian process) that are biased to be more
similar to one another than are the underlying generating
values. In other words, low rates are upwardly biased;
whereas estimates of high rates obtained in this manner
are biased in a downward fashion, resulting in decreased
power to detect rate variation on the tree. This has not
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previously been noted in the literature. Rather, it seems
to be typically assumed that averaging over a sample
of plausible character histories will produce unbiased
estimates of the underlying evolutionary rates (although
this is not usually stated explicitly). In some cases, the
bias can be quite severe (Fig. 2).

That said, however, the observed bias does not result
in confidence intervals around the estimated parameters
that are vastly smaller than if the true character history
was known without error. In fact, for most of the
simulation conditions of this study it was the confidence
intervals around the parameter estimates from the true
character history that were too small (Fig. 4a). This
suggests that we should not be overly concerned about
the possibility of being substantially misled by this
method. The effect that bias in parameter estimation has
on hypothesis testing in this case is in fact a loss of power
to identify rate heterogeneity when it exists (Fig. 4b). In
other words, researchers finding a significant difference
in the estimated rates across a mapped discrete character
can probably be fairly confident that this result reflects
a real underlying rate difference; however, they should
be cautious about interpreting the estimated rates which
might be biased.

Although the trend is found at all values of
the transition rate for our discrete trait, q, it only
becomes severe for large values (Fig. 2). A reasonable
consideration, particularly in light of the fact that q
scales with branch lengths for a given tree (specifically,
multiplying the branch lengths of the tree by factor k
will scale estimated q by 1/k), is to ask what is meant by
a “high” rate of transition in the discrete character.

A productive exercise here might be to calculate the
expected number of changes on the tree given a fitted
rate of character change. For a binary character with q12 =
q21 =q, this quantity will just be equal to the total branch
length of the tree multiplied by q. Thus, with a specific
estimate of the phylogeny and branch lengths (in vector
v) we can compute the expected number of changes
q
∑m

i=1vi, for m branches in the tree. Theory also tells us
that for an unknown Yule tree (a constant-rate pure-birth
phylogeny) of length t and size N the expected number
of changes in a binary character with transition rate q
is given by qt(N−1)/log(N/2). This is simply derived
from the number of edges in an N taxon bifurcating
tree: 2N−2; the speciation rate for an N species pure-
birth tree of length t:�= log(N/2)/t; the mean branch
length on a pure-birth phylogeny with speciation rate
�: 1/(2�) (Mooers et al. 2012); and a small amount of
algebra. Because I conducted all my analyses with pure-
birth trees, we can use this equation to calculate that the
expected number of changes for discrete traits simulated
with rates q=0.5, 1.0, 2.0, 4.0, and 8.0, will be about 13,
25, 51, 101, and 202, respectively. It is very important
to note that these values for the expected number of
changes are different from both the minimum number
of changes (obtained, for instance, using parsimony),
which will be lower; and from the realized number of
changes in any given simulation, which might be higher
or lower. Nonetheless, in most studies of the influence of

habitat, trophic level, mating system, or other discretely
varying character on continuous trait evolution, q=2.0,
4.0, or 8.0, on a pure-birth tree of unit length containing
100 species would be a very fast evolving character
indeed!

Certainly part of the reason that the data analysis
pipeline of Figure 1 can lead to biased evolutionary
rate estimates is because no information from the
continuous character is used to choose among alternative
character histories for the discrete trait. Thus, the best
method for incorporating data for a discrete trait might
involve simultaneously maximizing the likelihood of our
discrete character history along with the likelihood of
our continuous trait data conditioned on that history.
Unfortunately, this is not as simple as merely using the
likelihood of the set of ancestral states at internal nodes
implied by our maps. These likelihoods are computed by
summing across all possible character histories between
nodes consistent with that set of states, whereas our
stochastic map represents one specific history. As an
appealing alternative one could adopt a fully Bayesian
framework and simultaneously sample rate regimes and
evolutionary rates conditioned on both our data for the
continuous trait and a discrete character hypothesized
to influence its rate of evolution. These approaches are,
however, beyond the scope of the present short note.

Although simultaneous estimation of the rates of
continuous character estimation along with the discrete
character history upon which they depend might help
mitigate the bias described in this study, I feel that the
problem is in many ways more fundamental. Specifically,
in our generating model some periods of evolutionary
change have low variance (when the discrete character
is in state “1”) and others have high variance (state
“2”). Error in the discrete character history (an avoidable
result of incomplete historical knowledge, regardless
of our methodology) will inevitably result in the
misattribution of some episodes of high evolutionary
change to state “1”; as well as other periods of relatively
low evolutionary change to state “2.” Like any situation
in which we mix distributions of unequal variance (but
equivalent mean, as under Brownian motion), the result
is a distribution with an intermediate variance—as I
have found in this study. This argument is consistent
with the strong relationship between the mean overlap
of the stochastic maps with the generating character
history and our bias in the estimated rates (Fig. 3). What
gives me cause for optimism, however, is that this effect
is relatively minor (essentially undetectable from the
number of simulations conducted here) as long as the
rate of change in the discrete character is modest; which
means that most empirical data sets probably fall toward
the right side of Figure 3 where overlap between a typical
stochastic map and the true character history is high and
bias in the estimation of evolutionary rates is relatively
slight.

Finally, in addition to being applied in the data
analysis pipeline described herein, the general
procedure of stochastic character mapping (Nielsen
2002; Huelsenbeck et al. 2003; Bollback 2006) has
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many other uses in phylogenetic biology. For instance,
stochastic character mapping has also been used to
generate a sampling distribution on transition rates (e.g.,
Anacker et al. 2011), to reconstruct ancestral character
states at internal nodes (e.g., Brockington et al. 2011;
Calvente et al. 2011), to obtain sampling distributions
for the timing or number of changes in a discrete trait
along the branches of a phylogeny (e.g., Algar and Losos
2011; van Wilgenburg et al. 2011), and to estimate the
evolutionary correlations between discrete characters
evolving on the tree (e.g., Brockington et al. 2011). So
far as I am aware, the results of this study do not carry
any implications for these other common applications
of stochastic mapping in phylogenetics.

CONCLUSIONS

Likelihood-based methods for analyzing character
evolution in the context of a tree are becoming
increasingly popular. Here, I examined a common data
analysis pipeline in which investigators test for the
relationship between the state of a discrete character
and the rate of evolution in a continuous trait first
by mapping the discrete trait using the technique of
stochastic character mapping and then by using ML to
fit a multirate evolutionary model for the continuous
character. I show that this pipeline causes estimated
rates to be more similar to one another than are their
underlying generating values. However, I also show that
although this error results in decreased power, it is less
likely to lead to a type I error. Furthermore, I show
that the effect is only severe when the discrete character
changes frequently, resulting in a character history that
is highly uncertain.

SUPPLEMENTARY MATERIAL

Data files and/or other supplementary information
related to this paper have been deposited on Dryad
at http://datadryad.org under doi: 10.5061/dryad.
8mj66m5c.
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