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1  | INTRODUC TION

Over the past several decades, the field of phylogenetic comparative 
biology has emerged to assume a leading role in the study of evo-
lutionary change through time (Felsenstein, 1985; Harvey & Pagel, 
1991; O’Meara, 2012). Many phylogenetic comparative methods 

involve combining evolutionary trees with trait data for species to 
ask questions about how phenotype may have evolved over the 
history of our group of study (O’Meara, 2012; e.g., Butler & King, 
2004; Felsenstein, 1985; Hansen, 1997; Mahler, Revell, Glor, & 
Losos, 2010; O’Meara, Ané, Sanderson, & Wainwright, 2006; Revell, 
Mahler, Peres-Neto, & Redelings, 2012). However, a separate class 
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Abstract
Over the past decade or so it has become increasingly popular to use reconstructed 
evolutionary trees to investigate questions about the rates of speciation and extinc-
tion. Although the methodology of this field has grown substantially in its sophistica-
tion in recent years, here I will take a step back to present a very simple model that is 
designed to investigate the relatively straightforward question of whether the tempo 
of diversification (speciation and extinction) differs between two or more phyloge-
netic trees, without attempting to attribute a causal basis to this difference. It is a 
likelihood method, and I demonstrate that it generally shows type I error that is close 
to the nominal level. I also demonstrate that parameter estimates obtained with this 
approach are largely unbiased. As this method can be used to compare trees of un-
known relationship, it will be particularly well-suited to problems in which a differ-
ence in diversification rate between clades is suspected, but in which these clades 
are not particularly closely related. As diversification methods can easily take into 
account an incomplete sampling fraction, but missing lineages are assumed to be 
missing at random, this method is also appropriate for cases in which we have hy-
pothesized a difference in the process of diversification between two or more focal 
clades, but in which many unsampled groups separate the few of interest. The 
method of this study is by no means an attempt to replace more sophisticated models 
in which, for instance, diversification depends on the state of an observed or unob-
served discrete or continuous trait. Rather, my intention is to provide a complemen-
tary approach for circumstances in which a simpler hypothesis is warranted and of 
biological interest.

K E Y W O R D S

comparative methods, diversification, maximum likelihood, phylogeny

www.ecolevol.org
http://orcid.org/0000-0003-0767-4713
http://creativecommons.org/licenses/by/4.0/
mailto:liam.revell@phytools.org


5304  |     REVELL

of method uses phylogenies in which the lengths of the branches in 
the tree have been calibrated to be equal or proportional to elapsed 
time. These time-calibrated phylogenies, or time-trees, can then 
be employed to investigate questions about the processes under 
which lineages accumulate—namely, speciation and extinction (Nee, 
May, & Harvey, 1994; Stadler, 2012). The first explicitly statistical 
method designed to estimate speciation and extinction rates from 
a reconstructed phylogenetic tree was proposed by Sean Nee and 
colleagues in the first half of the 1990s (Nee et al., 1994; although 
prior methods based on sister-group comparisons also existed at 
this time, e.g., Slowinski & Guyer, 1993). The approach of Nee and 
colleagues utilizes the internode distances from a fully sampled and 
time-calibrated phylogenetic tree. On a semilogarithmic scale, the 
slope (or rate) of new lineage accumulation in the reconstructed phy-
logeny has an expected value at the root of the tree equal to the net 
diversification rate: speciation minus extinction. As the present day 
is approached the value of this slope will tend toward the speciation 
rate alone, because extinction has not yet had time to act on these 
most recent lineages of the tree. This property of reconstructed phy-
logenies (called the “pull of the present”) is exploited in the method 
of Nee et al. (1994) to estimate the rates of lineage proliferation and 
loss from the phylogeny.

The approach of Nee et al. (1994) has subsequently spawned a 
cottage industry of new, increasingly sophisticated approaches and 
techniques. Some notable examples include a method developed 
by Maddison, Midford, and Otto (2007) and Fitzjohn, Maddison, 
and Otto (2009) designed to measure the association of a binary 
trait with speciation and extinction rates, and a flexible approach 
by Rabosky (2014) designed to model continuous heterogeneity 
in the rates of speciation and extinction on the tree. These meth-
ods are not alone, however, and numerous others have been pre-
sented within the past decade or so (e.g., Alfaro et al., 2009; Morlon, 
Potts, & Plotkin, 2010; Goldberg, Lancaster, & Ree, 2011; Silvestro, 
Schnitzler, & Zizka, 2011; Etienne & Haegaman, 2012; Bealieau & 
O’Meara, 2016; reviewed in Ricklefs, 2007; Stadler, 2012; Rabosky, 
Mitchell, & Chang, 2017).

Unfortunately, several of these new approaches have also been 
criticized. For instance, Rabosky and Goldberg (2015; also see 
Maddison & Fitzjohn, 2015 and O’Meara & Beaulieu, 2016) showed 
that in empirical phylogenies, there is a concerning tendency to 
reject constant rate speciation and extinction in favor of a trait-
dependent model, even if the trait in question has been created with 
no association with the generative process of the tree. This seems 
to be because the null model of constant rates is overly simplistic 
for virtually all empirical phylogenetic trees, and thus any degree 
of model complexity that can help explain the genuine underlying 
heterogeneity in diversification rates on the phylogeny is favored 
(O’Meara & Beaulieu, 2016). More recently, Moore, Höhna, May, 
Rannala, and Huelsenbeck (2016) published a challenging critique of 
Rabosky’s (2014) Bayesian approach, and it has been argued that it is 
simply not possible to model speciation and extinction rates drawn 
from a continuous distribution as in the method of Rabosky (2014; 
see Höhna et al., 2017; but see Rabosky et al., 2017).

To try to circumvent some of this heated controversy, here I 
have deliberately taken a step back to present a relatively sim-
ple model in which, given a total of m trees with branch lengths 
in matching units of time, we fit one model in which all trees are 
constrained to diversify under an identical process of speciation 
and extinction. Then, we compare this model to one in which each 
tree is allowed to have its own tree-specific diversification rates. 
I can and do extend this general approach to test hypotheses in 
which all trees share a common rate of extinction, but differ in 
their speciation rates; in which all trees share a speciation rate, 
but different in extinction; and in which a subset of phylogenies 
in a group has diversified under a common process that in turn 
differs from the remaining trees. Any or all phylogenies can have 
an incomplete sampling fraction, as long as we are comfortable 
with the assumption that this fraction is known for each tree, and 
that the missing lineages are absent at random (Stadler, 2012). 
After briefly describing the model in its various flavors, I will then 
proceed to examine its statistical properties using numerical sim-
ulations. Finally, I will conclude by discussing some potential uses 
for this method, some common sources of error and bias in the 
estimation of diversification rates from phylogenies in general, 
and some alternative models for the processes of speciation and 
extinction through time.

2  | MODEL ,  METHODS, AND RESULTS

2.1 | The model

The method employed herein is a very simple extension of Nee et al. 
(1994) and Stadler (2012). In it, we will consider two models. One is 
a more complex model in which the speciation rates (λ1, λ2, λ3, and 
so on) and the extinction rates (μ1, μ2, μ3, and so on) of each phylog-
eny are permitted to assume different values. This model includes 
known incomplete sampling fractions (denoted ρ) that are permitted 
to differ from tree to tree. We can compute the log-likelihood under 
this model by merely summing the separate log-likelihoods across 
our various phylogenies as follows:

here, m is the total number of reconstructed phylogenetic trees in 
our study, Ni is the number of species sampled in the ith tree, tj is 
the jth branching time in distance from the present, ordered from 
root to tip, while pi

0
(t) and pi

0
(t) are defined for the ith tree as follows 

(Stadler, 2012):
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This is exactly the same as model (5) in Stadler (2012), in which 
we condition on the total depth of the most recent common ancestor 
of each clade, but here we merely accumulate this likelihood across 
trees. Note that it would be straightforward to extend this approach 
to other conditionings, as presented in Stadler (2012), so long as like-
lihood expressions are available.

Next, we can then compare this to a simpler model in which 
λ1 = λ2 = … = λm and in which μ1 = μ2 = … = um. The former model has 
2m parameters for m different phylogenies (one speciation and one 
extinction rate for each tree); whereas the latter has only two pa-
rameters to be estimated: the single, global speciation and extinction 
rates, λ and μ. As such, we can easily compare the likelihoods of the 
two models using a likelihood-ratio test with 2m − 2 degrees of free-
dom (or using any of the normal machinery of likelihoods).

In addition to these two models, it is also straightforward to fit 
a model in which all speciation rates are permitted to assume differ-
ent values (λ1 ≠ λ2 ≠ … ≠ λm), but extinction rates are equal among 
trees (μ1 = μ2 = … = μm), or one in which all speciation rates are equal 
(λ1 = λ2 = … = λm) but extinction rates can differ among phylogenies 
(μ1 ≠ μ2 ≠ … ≠ μm). Both of these models would have m + 1 parame-
ters to be estimated, and thus could be compared to the simplest 
model in which all rates are equal across trees using a likelihood-ratio 
test with m − 1 degrees of freedom. Similarly, it would be straightfor-
ward to model diversification as a “Yule” or pure speciation process 
in which μ1 = μ2 = … = μm = 0. In this case, we could permit all spe-
ciation rates to assume different values and compare this to a Yule 
model with a constant speciation rate across trees using a likelihood-
ratio test with m − 1 degrees of freedom. Finally, if we have an a 
priori hypothesis about variation in the rate of diversification among 

trees, for instance, that trees 1, 2, and 4 share a common set of spe-
ciation and extinction rates (λ1 = λ2 = λ4 and μ1 = μ2 = u4), while tree 
3 arose via a different process, we can fit this model and compare it 
to our simplest model in which all rates are constrained to be equal. 
In this final case, the number of parameters in the more complex of 
the two models is 2m in which m is the number of groups, rather 
than the number of phylogenies; whereas in the simpler model the 
number of parameters to be estimated is still merely two.

2.2 | Simulation tests of the method and results

To explore the statistical properties of this method, I first conducted 
a simple analysis of its type I error. For this analysis, I simulated 500 
sets of three trees under different speciation and extinction rates. 
I held the extinction fraction, μ/λ, constant at 0.25, and I varied 
net diversification (λ − μ) such that the expected number of line-
ages after T = 100 units of time were E(N)=20, 50, 100, 200, or 
500, depending on the simulation. I then computed the fraction of 
analyses resulting in a significant result via a likelihood-ratio test 
for each set of simulation conditions. For all of these sets of simula-
tions, the simulated speciation and extinction rates were identical 
among trees, and thus rejection of the null of common diversifica-
tion rates in favor of any of the aforementioned alternative hypoth-
eses (variable speciation, variable extinction, or variable speciation 
& extinction) would represent an error of the first type. In addition 
to the null model of equal rates, I also fit all three of the afore-
mentioned models to each set of phylogenies. The results from this 
analysis are presented in Figure 1 (also see Figures S1 and S2) and 
Table 1 (also see Tables S1 and S2). p-Values across simulations for 
all simulation conditions described above reasonably approximated 

F IGURE  1 Distribution of p-values 
obtained from hypothesis tests when data 
were simulated under the null hypothesis 
of no difference in rate between trees. 
The expected distribution is uniform 
on the interval of [0, 1]. Simulation 
conditions were selected to result in three 
phylogenies each with an equal expected 
number of lineages of 50, 100, 200, and 
500 for panels (a) through (d), respectively, 
given a total tree depth, T, of 100, 
while maintaining a constant extinction 
fraction μ/λ = 0.25. Specific simulated 
speciation (λ) and extinction (μ) rates 
were as follows: (a) λ1 = λ2 = λ3 = 0.043 
and μ1 = μ2 = μ3 = 0.011; 
(b) λ1 = λ2 = λ3 = 0.052 and 
μ1 = μ2 = μ3 = 0.013; (c) λ1 = λ2 = λ3 = 0.061 
and μ1 = μ2 = μ3 = 0.015; and 
(d) λ1 = λ2 = λ3 = 0.074 and 
μ1 = μ2 = μ3 = 0.018

P−value from χ2 test

R
el

at
iv

e 
fre

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20(a)

P−value from χ2 test

R
el

at
iv

e 
fre

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20(b)

P−value from χ2 test

R
el

at
iv

e 
fre

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20(c)

P−value from χ2 test

R
el

at
iv

e 
fre

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20(d)



5306  |     REVELL

a uniform distribution on the interval [0, 1], which is exactly as pre-
dicted under the null hypothesis (Figures 1, S1, and S2)—that is, if 
the statistical method is working as designed. In addition, in exactly 
half of my simulation conditions, the type I error rate of the method 
did not significantly exceed the nominal rate of 0.05 based on a 
binomial test (Tables 1, S1, and S2). In particular, no type I errors 
using the full (variable speciation and extinction) model were sig-
nificantly elevated above the nominal level (Table 1); while three 
of four simulation conditions in each of the variable speciation and 
variable extinction models significantly exceeded the 0.05 thresh-
old (Tables S1 and S2). Note that even in cases in which type I error 
was significantly elevated based on a binomial test, the highest ob-
served type I error rate of this study was less than 10% (specifically, 
0.085; Table S2).

I also simulated under the null hypothesis but in which I varied 
T, the total depth of the tree, such that the expected number of 
taxa was unequal between the two trees. In particular, I fixed the 
birth rate, λ, to 0.052, and the death rate, μ, to 0.013, and then 
simulated two trees each of total depth T1 = 100 and T2 = 141.1, 
respectively. These simulation conditions were chosen because 
they result in an expected number of lineages equal to E(N1)=100 
and E(N2)=500 for each phylogeny. I simulated 500 pairs of trees 
in this way, and fit each of the three aforementioned alternative 
models (variable speciation, variable extinction, and variable 
speciation & extinction) along with our null model of equal rates 
among trees. For all three models, the distribution of p-values 
across simulated datasets closely resembled a uniform distribution 
on the interval [0, 1], just as expected for data generated under the 
null (Figure 2). Type I error was not significantly elevated above 
its nominal level of 0.05 for the variable speciation & extinction 
model (Table 2); however, type I error was significantly elevated 
for both the variable speciation and the variable extinction mod-
els (Table 2). The highest observed level of type I error was 0.075 
(Table 2).

2.3 | Power and parameter estimation

In addition to this analysis of type I error, I also examined power 
and parameter estimation of the method when the null hypothesis 
of equal speciation and extinction among trees was false. To do this, 

I simulated 500 pairs of trees under each of the following simula-
tion conditions: I held total depth constant at T = 100, I held extinc-
tion constant at μ = 0.013, and I set λ1 = 0.052. I then varied λ2 from 
λ2 = 0.045, 0.052, 0.059, 0.068, to 0.075. These parameter values 
were selected because they result in E(N1)=100 and E(N2)=50, 
100, 200, 500, and 1,000, respectively. For all parameter values, I 
repeated any simulation that resulted in fewer than five extant lin-
eages in the reconstructed phylogeny. For each pair of simulated 
trees, I fit a variable speciation model (the known generating model) 
and recorded the parameter estimates and p-value of the null hy-
pothesis test against a model of equal speciation and extinction 
rates among trees. Figure 3a shows that parameter estimates were 
unbiased for both λ1 and λ2. The mean, common extinction rate is 
slightly biased in an upwards direction, although this is likely due to 
the fact that estimation of the rate of extinction, by convention (and 
logically), has a lower bound of μ = 0.0. Figure 3b shows that power 
to reject the null hypothesis of equal rates was relatively modest 
when differences in the generating speciation rates (λ1 and λ2) are 
small; however, power increases to nearly 0.86 for the largest dif-
ference in rate simulated in this study. I also conducted precisely the 
converse analysis in which I held speciation rate constant and varied 
extinction rate, once again using parameter values chosen to result 
in E(N1)=100 and E(N2)=50, 100, 200, 500, and 1,000. I then evalu-
ated parameter estimation and power of the method. The results 
from this analysis are similar and shown in Figure S3. Finally, I con-
ducted an analysis in which both speciation and extinction rate were 
varied between trees. I selected parameter values for λ1, λ2, μ 1, and 
μ1 such that E(N1)=50, 100, 200, 500, and 1,000, while E(N2)=1,000

, 500, 200, 100, and 50, using intersecting extinction fractions (μ/λ) 
from 0.35 to 0.15 and 0.15 to 0.35, respectively. The results from 
this analysis are given in Figure S4.

Although the decision to retain only trees with greater than four 
tips has the potential to slightly bias the results (by removing trees 
that experienced either a very low number of speciations or an un-
usually high number of extinctions for a given set of μ and λ), I have 
no reason to suspect that this should increase measured power to 
detect a significant difference in diversification between trees. To 
the contrary, by removing “extreme phylogenies” (that is, trees with 
far fewer taxa than expected) one instead might predict measured 
power of the method to be decreased relative to its true value when 
a genuine difference in rate has been simulated. Furthermore, when 
I duplicated this analysis using all trees containing greater than two 
taxa instead of only trees with greater than four taxa (not shown) the 
power of the method and average results were unaffected (although 
the variance estimates among simulations increased substantially for 
the lowest net diversification rate simulations).

In addition to these analyses, I also conducted several additional 
tests of the method performance with regard to number of trees 
and total tree size. First, I simulated birth–death trees in which tree 
1 was generated using a speciation rate (λ = 0.067) expected to re-
sult in E(N1)=300 after 100 units of time, while trees 2 to n for n = 2 
through 11 were simulated using a speciation rate expected to re-
sult in 100 taxa after the same amount of time (λ = 0.056), holding 

TABLE  1 Type I errors for the variable speciation and extinction 
model with data generated under the null hypothesis of equal 
speciation and extinction rates between trees. Each analysis 
consisted in generating three phylogenies with an equal expected 
number of extant lineages equal to E(N)=50, 100, 200, or 500. 
Each simulation condition was replicated 500 times

Expected number  
of lineages, E(N)

Type I error  
rate

P (binomial 
test)

50 0.057 0.296

100 0.051 0.447

200 0.049 0.529

500 0.056 0.232
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extinction rate constant at μ = 0.017. I then fit both variable specia-
tion and constant speciation & extinction models to each simulated 
set of trees. I found that power to reject the null hypothesis of con-
stant speciation among phylogenies did not seem to vary with the 
total number of trees and was around 40% for all simulation condi-
tions (Figure S5). To examine the statistical power of the method for 
trees containing very few taxa, I also simulated pairs of pure-birth 
(“Yule”) trees in which I held speciation rates constant at λ1 = 0.04 
and λ2 = 0.08 for all simulations, but in which I varied T1 and T2 such 
that the expected number of lineages (N1 and N2) were identical for 
all simulation conditions and equal to 5, 10, 20, 40, and 80. In con-
trast to all prior simulations, I also conditioned simultaneously on λ, 
μ (set to μ = 0 for all simulations), N, and T. This is more computation-
ally intensive, but results in trees for each simulation condition that 
are invariant in taxon number and total depth. I then fit a both vari-
able speciation and constant speciation Yule models and measured 
statistical power as the frequency of tests in which the null hypothe-
sis of constant speciation was rejected. The results from this analysis 
showed very low power for the smallest phylogenies, but statistical 
power in excess of 50% even for trees simulated with N1 = N2 = 20, 
given the simulated difference in birth rate (Figure S6).

F IGURE  2 Distribution of p-values obtained from null 
hypothesis testing in which the data were simulated with no 
difference in speciation or extinction rates between trees. The 
expected distribution is uniform on the interval [0, 1]. Speciation 
and extinction rates for each of two trees generated for each 
replicate were identical at λ1 = λ2 = 0.052 and μ1 = μ2 = 0.013; 
however, simulations were conducted over different total durations 
of T1 = 100 and T2 = 141.14 to result in a different expected number 
of lineages in each tree (100 and 500, respectively). Panel (a) shows 
the distribution of p-values in comparing the variable speciation/
variable extinction to the null hypothesis of no difference in 
speciation or extinction among trees; while panels (b) and (c) show 
the variable speciation and variable extinction models, respectively
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TABLE  2 Type I errors for the variable speciation & extinction, 
variable speciation, and variable extinction models for phylogenies 
generated under the null hypothesis of no difference in speciation 
or extinction rate between trees. Each of 500 replicated analyses 
consisted in generating two phylogenies with equal speciation and 
extinction rates, but differing in total depth such that the expected 
number of lineages in each tree were E(N1)=100 and E(N2)=500, 
respectively, then fitting each of the three aforementioned models 
(plus the equal rates null model) to each pair of trees

Model
Type I error  
rate P (binomial test)

Variable speciation & 
extinction

0.042 0.759

Variable speciation 0.069 0.030

Variable extinction 0.075 0.008
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2.4 | Notes on implementation

All the models and methods of this study have been implemented 
for the R statistical computing environment (R Core Team, 2017), 
and all simulations and analyses were conducted in R. The statis-
tical method described herein has been implemented as an option 
of the ratebytree function of my phytools R package (Revell, 2012). 
phytools itself in turn depends on the important R phylogenetics 
packages ape (Paradis, Claude, & Strimmer, 2004) and phangorn 
(Schliep, 2011), as well as on a number of other R packages (Azzalini 
& Genz, 2016; Becker, Wilks, Brownrigg, Minka, & Deckmyn, 2016; 
Chasalow, 2012; Gilbert & Varadhan, 2016; Harmon, Weir, Brock, 
Glor, & Challenger, 2008; Jackson, 2011; Lemon, 2006; Ligges & 
Mächler, 2003; Neuwirth, 2014; Pinheiro, Bates, DebRoy, Sarkar, & 
R Core Team, 2017; Plummer, Best, Cowles, & Vines, 2006; Qiu & 
Joe, 2015; Venables & Ripley, 2002; Xie, 2013).

3  | DISCUSSION

3.1 | Type I error

This method had type I error rates close to the nominal level under 
a range of conditions (Figures 1 and 2; Tables 1 and 2). In fact, in 
many simulations, type I error rates were not significantly different 
from 0.05 based on a binomial test (e.g., Table 1). However, in about 
half of all simulations type I error was significantly elevated, though 
the highest level of type I error observed across all simulations was 
0.085 (Tables S1 and S2). In empirical research, I recommend accom-
panying a likelihood-ratio test with a test involving a null distribution 
for the likelihood-ratio test statistic generated via simulation. Prior 
research suggests that this is most likely to be important when some 
parameter or parameters of the model, for instance, the extinction 
rates, are at or near their boundary condition (e.g., Etienne, Pigot, & 
Phillimore, 2016). This is already straightforward to undertake in the 
R environment given the abundant range of phylogenetic simulators 

available in R (e.g., Harmon et al., 2008; Paradis et al., 2004; Revell, 
2012; Stadler, 2017). Herein, I did not conduct a thorough explora-
tion of this approach, given the computational intensity of the req-
uisite simulations and the relatively good statistical performance of 
the method when using a simple χ2 distribution as the null. In addi-
tion, generating the null distribution via simulation opens a number 
of questions that I am relatively unprepared to answer. In particu-
lar, it is not entirely clear to me whether simulated trees should be 
conditioned on total depth, λ, and μ, or on depth, λ, μ, and the total 
number of taxa in each observed tree (Stadler, 2011). This is an inter-
esting question that could be the subject of future study; however, 
in the meantime, I recommend treating statistically marginal results 
with caution.

3.2 | Use of the method

As noted in the introduction, recent years have witnessed the rapid 
proliferation of methodology designed to investigate heterogeneity 
in the process of diversification throughout the tree of life. Some 
of these methodologies have been criticized (e.g., Moore et al., 
2016; Rabosky & Goldberg, 2015); nonetheless, I feel that these ap-
proaches continue to remain state-of-the-art for the field. Herein, I 
have presented a simpler technique for exploring heterogeneity in 
the process of diversification among phylogenies. In it, I proposed 
merely accumulating the likelihood across trees under a scenario 
in which all trees share a common set of speciation and extinction 
rates, and then under another scenario in which each tree is permit-
ted to have its own unique set of rates. Then, we just need to com-
pare the likelihoods. Although I envision applying this approach to 
phylogenetic trees of unknown relationship—an equally common sit-
uation might be the one illustrated by Figure 4 in which some parts 
of the tree are of interest (in this case represented by the variously 
colored subtrees of the figure), have been well-sampled and are of 
known sampling fraction; whereas the remainder of the tree is of 
less interest and is poorly sampled or of unknown sampling fraction. 

F IGURE  3 Parameter estimation and power of the variable speciation method for data simulated under a scenario in which the speciation 
rate, but not the extinction rate, differed between trees. Simulation conditions were selected to result in an expected number of extant 
lineages of 100 in tree 1 and 50, 100, 200, 500, or 1,000 in tree 2, while maintaining a constant extinction rate of μ = 0.013 and a constant 
total tree depth of T = 100. Panel (a) shows the mean parameter estimate compared to the generating values for λ1, λ2, and μ. Horizontal 
or diagonal lines represent the generating values of the simulations, and vertical bars show the standard deviation of the estimated values 
across simulations. Panel (b) gives the power (or type I error, in the case of no difference in speciation rate between trees) of the method
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In this case, we can merely extract the various subtrees of interest 
and fit both a model in which they share common rates, and one in 
which rates are permitted to differ between subtrees of the phylog-
eny and compare them.

Note that in comparing this simple method to other more so-
phisticated (if recently controversial) approaches, I in no way intend 
to imply that I have proposed a replacement for these. Instead, 
I merely mention the comparison because in some cases in which 
these methods have proven inappropriate, the approach presented 
herein may nonetheless be useful. For instance, if we imagine a sce-
nario in which clades A and B arose under a low rate of diversifi-
cation, whereas clade C was produced by a different higher rate, a 
significant model fit via a state-dependent diversification method, 
such as the BiSSE method of Fitzjohn et al. (2009) using a character 
that happened to be fortuitously associated with the taxa of clade 
C would be weak evidence at best of a genuine causal association 
between our trait and elevated diversification. In fact, absent data 
from other groups in addition to our three aforementioned clades, 
no method can genuinely prove a causal link between our trait and 
elevated diversification in clade C. On the other hand, it would be 
completely reasonable to ask if clades A and B diversified by one 
process and C by another, or if all three had arisen under similar spe-
ciation and extinction rates (and perhaps differ one from the other 
in species richness due to chance alone). This simpler question can 
be asked and answered using the methodology of this paper, just so 

long as we understand that a significant result in no way implies a 
causal link between diversification and any trait.

Finally, it is also worth mentioning that for cases in which one 
or more changes in rate are suspected, but no specific a priori hy-
pothesis for the positions of these shifts is available, I would not 
recommend employing the approach of this study to test every con-
ceivable hypothesis for rate variation among clades. Instead, for the 
situation of a single tree one might employ the hidden rates model of 
Bealieau and O’Meara (2016). For multiple trees, it is straightforward 
to envision designing a reasonably straightforward reversible-jump 
Markov Chain Monte Carlo (MCMC) approach using the likelihood 
expressions of this article. In this case, Bayesian MCMC would be 
used to sample models of varying complexity and parameter values 
from their joint posterior distribution. Although an intriguing idea, I 
consider this to be beyond the scope of the current study.

3.3 | Biases and sources of error in the estimation of 
diversification rates

The birth–death model that is used to approximate the accumulation 
of diversity in phylogenetic trees in this study, and throughout the 
literature, is a stochastic process with high variance. Consequently, 
it will often be quite difficult to accurately determine the generat-
ing parameters of this process from empirical trees, even under the 
idealized circumstances of phylogenetic trees estimated with no or 

F IGURE  4 Example scenario for this 
method for comparing diversification 
rates among trees, but in which the 
relationship among phylogenies is known 
or hypothesized. The various colored 
subtrees represent the clades of interest 
and of known sampling fraction, where 
the remaining gray branches show poorly 
sampled lineages or lineages of unknown 
sampling fraction, and for which no a 
priori hypothesis exists for variation in 
speciation or extinction rates across the 
phylogeny
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minimal error. Nonetheless, there are also attributes of the statisti-
cal methods used to estimate trees, and the nature of the phylo-
genetic datasets typical of contemporary phylogenetic studies, that 
can contribute bias to the estimation of speciation and extinction 
rates from reconstructed trees.

For instance, it has been shown that model insufficiency (e.g., 
Revell, Harmon, & Glor, 2005) will cause the deepest edges of the 
tree to be systematically underestimated relative to edges closer to 
the present day. This may cause the perception of a “slowdown” in 
the accumulation of new lineages toward the present, counterbal-
ancing the “pull-of-the-present” that is used by the method of Nee 
et al. (1994; and thus too by this method) to measure extinction. 
Consequently, underestimation of deep edges in the tree should 
systematically downwardly bias the estimation of extinction rates 
from empirical molecular phylogenies.

Similarly, most contemporary phylogenetic studies use molec-
ular genetic data to infer the relationships of species. These data 
often consist of gene sequences from many loci. Population genetic 
coalescence invariably precedes speciation events. In fact, theory 
predicts that coalescence should precede speciation by (on aver-
age) 2Ne generations, in which Ne is the effective population size 
of the parental lineage before the event. This is not ameliorated 
by including data from multiple loci. In fact, so doing merely helps 
guarantee (for more and more independently segregating loci) that 
the average divergence time precisely matches the divergence time 
predicted by coalescent theory: that is, the true time of speciation 
minus 2Ne generations. If effective population size and generation 
times are relatively constant across the tree then all internal nodes 
of the tree should be affected equally—pushed an equal distance 
backwards in time relative to the true times to speciation. Terminal 
nodes, however, are not so affected and will have an expected length 
equal to the sum of their true length plus the time to coalescence. 
Consequently, coalescence may also have the effect of increasing 
the length of terminal edges relatively to internal edges of the tree, 
and thus should downwardly bias the estimation of extinction rates 
from molecular phylogenies. This will be particularly true of rapid di-
versifications in which edge lengths and coalescent times are similar 
in magnitude.

Finally, contemporary diversification methods, including the 
simple approach of this article, can now readily take into ac-
count incomplete sampling fraction (Stadler, 2012); however, 
these methods invariably assume that the missing taxa are absent 
from the tree at random. Of course, in empirical studies this is 
seldom if ever the case. More often, due to prevailing taxonomic 
practices, I suspect that missing lineages will be overdispersed. 
Overdispersed missing taxa will disproportionately affect recent 
nodes of the tree which will also tend to weaken our measured 
“pull-of-the-present” and thus result in systematically underesti-
mated extinction. (Although it also occurred to me that missing 
taxa may sometimes be clumped—for instance, if some geographic 
regions are more poorly studied than others and if species within 
a region tend to be more closely related than expected by chance. 
In fact, I do not know how clumped missing taxa would affect the 

estimation of speciation and extinction by this or other methods.) 
Inasmuch as some of these sources of bias in the estimation of 
diversification rate vary among trees, they should also be consid-
ered when applying this approach for studying heterogeneity in 
speciation and extinction between phylogenies.

3.4 | Some consideration of the birth–death model

In this study, I have developed a method for comparing diversifi-
cation between trees in which I have assumed a model for diver-
sification generally referred to as the “birth–death” model. This 
model is one in which speciation events (“births”) and extinctions 
(“deaths”) occur randomly and instantaneously with a given set of 
rates, λ and μ, even if these rates are permitted to vary among lin-
eages, through time, or, as in this study, between trees. Although 
this model seems reasonably logical (as an approximation of the 
true underlying biological process, of course), a number of alter-
native, conceptually distinct models have also been proposed. 
For instance, Morlon (2014) outlined a set of 13 distinct models 
that might be used to study diversification in phylogenies. Some 
are variants of the birth–death model employed here, such as the 
character-dependent diversification models in which birth and/
or death rates vary as a function of a trait (e.g., Fitzjohn, 2012; 
Goldberg et al., 2011; Maddison et al., 2007). Others, such as the 
“age dependence model” (in which lineages might be more or less 
likely to speciate or go extinct as they age; e.g., Mooers, Harmon, 
Wong, & Heard, 2007), the “protracted speciation model” (in 
which speciation takes time rather than occurring instantane-
ously; e.g., Purvis, Orme, Toomey, & Pearson, 2009; Etienne & 
Rosindell, 2012), or the diversity-dependent diversification model 
(e.g., Etienne et al., 2016; Rabosky & Lovette, 2008) represent 
fundamentally different visions for how speciation and extinc-
tion occur through time. To the extent that expressions for the 
likelihood exist for these different models, it would be relatively 
straightforward to extend the approach of this study (merely in-
volving the accumulation of likelihoods across trees) to alterna-
tive, completely different models for diversification through time.

On the other hand, it is also worth pointing out that the method 
presented herein is also likely to be sensitive to violations in its as-
sumptions. That is, if the process responsible for producing our ob-
served trees differs markedly from that which we have modeled (the 
birth–death model in this study, or any of those mentioned above), 
then, we may end up obtaining a misleading result. For instance, if 
the true process is density-dependent speciation, and our two or 
more trees are in different stages of diversity accumulation, mod-
eling branching times under a birth–death process could conceiv-
ably lead us to incorrectly conclude that our trees were growing 
via different processes (different speciation or extinction rates or 
both) rather than by the same process at different stages of matu-
rity. This vulnerability to model assumption violations is a property 
of all model-based statistical methods and not a peculiarity of the 
approach presented in this study; however, it should nonetheless be 
kept in mind.
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4  | CONCLUSION

The quantitative study of speciation and extinction using recon-
structed phylogenetic trees, pioneered by Nee et al. (1994) over 
two decades ago, is more popular now than ever. Unfortunately, 
some recent methods—for instance a commonly-used approach 
designed to link diversification to phenotypic trait evolution—have 
been subject to criticism. Herein, I have proposed a simpler ap-
proach for modeling heterogeneity in the rates of speciation and/
or extinction among phylogenetic trees, without purporting to at-
tribute a causal basis to this rate heterogeneity. I show that the 
method has reasonable statistical properties: type I error at or near 
the nominal level; and parameter estimation that is reasonably if 
not entirely unbiased. I hope that this method will be useful for 
situations in which a difference in diversification rate is hypoth-
esized between two or more clades of unknown relationship, or for 
the equally common scenario in which the relationship between 
our clades of interest has been estimated, but intervening lineages 
have low or unknown sampling fraction. I feel that the method of 
this article is most properly viewed as a simplification of existing 
approaches, although it is one that I believe will nonetheless be of 
substantial utility to the rapidly growing community of macroevo-
lutionary biologists presently investigating heterogeneity in the 
processes of speciation and extinction on phylogenetic trees.
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