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Phylogenetic comparative methods thatincorporate intraspecific variability are relatively new and, so far, not especially widely

used in empirical studies. In the present short article we will describe a new Bayesian method for fitting evolutionary models

to comparative data that incorporates intraspecific variability. This method differs from an existing likelihood-based approach in

that it requires no a priori inference about species means and variances; rather it takes phenotypic values from individuals and a

phylogenetic tree as input, and then samples species means and variances, along with the parameters of the evolutionary model,

from their joint posterior probability distribution. One of the most novel and intriguing attributes of this approach is that jointly

sampling the species means with the evolutionary model parameters means that the model and tree can influence our estimates

of species mean trait values, not just the reverse. In the present implementation, we first apply this method to the most widely

used evolutionary model for continuously valued phenotypic trait data (Brownian motion). However, the general approach has

broad applicability, which we illustrate by also fitting the λ model, another simple model for quantitative trait evolution on a

phylogeny. We test our approach via simulation and by analyzing two empirical datasets obtained from the literature. Finally, we

have implemented the methods described herein in a new function for the R statistical computing environment, and this function

will be distributed as part of the ‘phytools’ R library.
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Comparative methods for the analysis of continuously valued

character data have progressed forward in a dramatic fashion in

recent years. For instance, there are now methods to fit multiple

evolutionary rates, selection regimes, and correlations between

characters to different parts of a phylogenetic tree (Butler and

King 2004; O’Meara et al. 2006; Thomas et al. 2006; Revell and

Collar 2009). In addition, there are methods to fit a punctua-

tional model of evolutionary change while taking extinct lineages

into account (Bokma 2002, 2008); as well as methods to fit mul-

tiple rates of evolution without specifying the positions of the

rate shifts and in situations where taxon sampling is incomplete

(Eastman et al. 2011; Revell et al. 2012; Slater et al. 2012; Thomas

and Freckleton 2012). Most of the aforementioned approaches

are based on maximum likelihood, but Bayesian Markov chain

Monte Carlo (MCMC) methods, now a mainstay of phylogenetic

inference (Yang and Rannala 1997), have also begun to infil-

trate comparative biology (Bokma 2008; Eastman et al. 2011;

Revell et al. 2012).

Although two different but closely related methods have been

proposed to account for intraspecific variation in comparative

analyses (Ives et al. 2007; Felsenstein 2008), most approaches

for evolutionary model fitting still essentially ignore sampling

error—treating the estimated means for individual species as

the population means known without error. This can have sig-

nificant consequences including causing bias in the estimation

of the parameters of our evolutionary model. For instance, esti-

mates of phylogenetic signal are downwardly biased on average

(Ives et al. 2007; Revell et al. 2008); whereas estimates of the
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evolutionary rate will be biased upwards if sampling error has been

ignored.

In a 2007 article, Ives et al. (2007) developed a maximum

likelihood technique for incorporating intraspecific variability

into the phylogenetic analysis of interspecific data. This method

is built around the relatively straightforward premise that if the

intraspecific variances for species are treated as known, then one

can simply add the extra sampling variance for the means of

species to the total variance expected between species in the tree

(Ives et al. 2007). The remaining variance not due to sampling

error is, of course, due to the evolutionary process and elapsed

time. Then one can just optimize whatever evolutionary model

is being fit (for instance, Brownian motion), identifying the val-

ues of the evolutionary parameters in the model for the process

of divergence between species that maximize the probability of

the data conditioned on the estimated sampling variances and the

phylogeny (Ives et al. 2007). In addition to the MATLAB (Math-

Works 2011) implementation of the original authors (Ives et al.

2007), this method has also been incorporated into the ‘geiger’

(Harmon et al. 2008) and ‘phytools’ (Revell 2012) R phylogenet-

ics libraries.

In the Bayesian method presented herein, we take a very

different approach. In our method, the phylogeny, the evolution-

ary model, and the phenotypic values for individuals serve as

input. We then sample species means, intraspecific phenotypic

variances, and the parameters of the evolutionary process from

their joint posterior probability distribution. The consequence of

taking this approach will be that, in theory, information flow is

bidirectional in the sense that the evolutionary model and its pa-

rameters can influence the estimates of our species means and

variances (as well as the reverse). In the end, we obtain a poste-

rior sample for both our evolutionary model parameters and our

species means and variances.

In addition to presenting our new method, we will ask the

following questions: (1) Does our Bayesian inference procedure

produce satisfactory estimates of underlying evolutionary param-

eters; and, in general, do 95% credible intervals from the posterior

sample include the generating parameter values? (2) Are the mean

phenotypic trait values for terminal species estimated unbiasedly

by our method; and, furthermore, do these estimates have lower

error than parametric estimates obtained from the data but ignor-

ing the tree and evolutionary model? In the present article, we

will address these questions with simulation and also present two

different example analyses of published datasets.

Methods
MATHEMATICAL AND COMPUTATIONAL DETAILS

We programmed all the analyses of this study in the scientific

computing language R (R Development Core Team 2011). Sam-

ple simulation code is provided in an Appendix S1 and the novel

functions of this study will be distributed as part of the ‘phytools’

R library (Revell 2012). The ‘phytools’ package is a multifunc-

tional R library that depends heavily on the core phylogenetics

package, ‘ape’ (Paradis et al. 2004).

In this article, we present a new Bayesian approach to the

phylogenetic analysis of species data with intraspecific variabil-

ity. We illustrate this approach by fitting a single rate Brownian

model for evolutionary change. Under a Brownian process, some-

times called a “random walk” model, evolutionary changes along

the branches of the tree are drawn randomly from a normal dis-

tribution with variance equal to the product of the evolutionary

rate (σ2
BM) and the length of the branch (Cavalli-Sforza and Ed-

wards 1967; Felsenstein 1985). Under this model of evolution

the true species means have a multivariate normal density with

a variance–covariance matrix given by σ2
BMC, in which C is an

n × n matrix containing in each position i, j the height above

the root node of the most recent common ancestor of the species

pair i and j (Rohlf 2001; Revell 2008). Thus, the diagonal of C
is populated with the total tree length from the root node to any

tip; and the off-diagonals are populated by the heights of internal

nodes on the tree.

For our method, we first need to obtain a function to calcu-

late the probability of our data, which consists of between one

and a large number of observations per species for a single con-

tinuously valued phenotypic trait, conditioned on the means and

variances of individual species, on the parameters of our evolu-

tionary model, and on our phylogenetic tree. To do this, we will

compute two different probabilities—first, the probability that a

particular proposed mean vector arose under the modeled evolu-

tionary process and parameter values; and second, the probability

of our observed data conditioned on the proposed mean vector

and intraspecific variances. We will consider two different mod-

els for the variance within species in this study (not to be confused

with our two different evolutionary models, discussed later). In

the first model, henceforward the “reduced” model, we assume

that intraspecific variability is the same for all species. In this

case, the likelihood of our evolutionary model parameters, mean

vector, and within-species phenotypic variance, conditioned on

the data and tree, is given by the following equation:

L(σ2
BM, α, x̄, σ2|x, C)

= exp[− 1
2 (x̄ − α1)′(σ2

BMC)−1(x̄ − α1)]

(2π)n/2
∣∣σ2

BMC
∣∣1/2

×
n∏

i=1

mi∏
j=1

exp[−(xi j − x̄i )2
/

2σ2]√
2πσ2

.

The first part of this equation provides the probability that

the data in the mean vector (x̄) arose on the phylogenetic tree
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(C), given the proposed Brownian motion rate (σ2
B M ) and state

for the root node of the tree (α). This expression is based on the

multivariate normal equation and assumes Brownian evolution as

the generating process (O’Meara et al. 2006). The second part

is the product over all observations in x (which is indexed by

species, i, and sample per species, j) of the probabilities that the

observed data arose given the mean vector x̄ and a proposed com-

mon intraspecific variance, σ2. This expression merely assumes

that the data are normally distributed within species and that

the observations within each species are independently sampled.

Data that are not normally distributed within species can often

be rendered so by transformation (e.g., log-transformation) (Log-

transformation may also normalize the within-species variability,

thus helping to satisfy the uniform variance assumption of this

model).

For reasons of computation, most of the analyses of this

article focus on the reduced model. However, if we have reason

to suspect that the interspecific variance varies strongly among

species, we might prefer to avoid the constant variance assumption

of the model given above. In this case, we substitute vector v for

intraspecific variance σ2, and use the following equation for the

likelihood:

L(σ2
BM, α, x̄, v|x, C)

= exp[− 1
2 (x̄ − α1)′(σ2

BMC)−1(x̄ − α1)]

(2π)n/2
∣∣σ2

BMC
∣∣1/2

×
n∏

i=1

mi∏
j=1

exp[−(xi j − x̄i )2
/

2vi ]√
2πvi

.

The only difference between this version and the prior

equation is that here we compute the probability of each ob-

servation within species, conditioned on both a species-specific

mean (contained in x̄) and a species-specific variance (contained

in v).

Finally, to illustrate the generality of our approach we also

considered one variant of the standard Brownian model: the λ

model of Pagel (1999). According to this model the off-diagonals

of the phylogenetic covariance matrix C are multiplied by the

coefficient λ, which is typically bounded on the interval (0, 1).

A useful way to think of λ might be as a measure of the fraction

of variability among species that is attributable to the tree and

a Brownian model of evolutionary change (whereas 1 − λ is the

fraction that is independent among species). The likelihood of

the parameters of the evolutionary model (in this case σ2
BM , α,

and λ) and the mean vector and intraspecific variance (x̄ and

σ2), conditioned on the data and tree, is given by the following

equation in which I · C indicates the Hadamard (i.e., element

wise) product of a diagonal matrix of 1.0s (I) and phylogenetic

covariance matrix, C, as previously defined

L(σ2
BM,λ, α, x̄, σ2|x, C)

= exp{− 1
2 (x̄ − α1)′[σ2

BM(λC + (1 − λ)I · C)]−1(x̄ − α1)}
(2π)n/2

∣∣σ2
BM[λC + (1 − λ)I · C]

∣∣1/2

×
n∏

i=1

mi∏
j=1

exp[−(xi j − x̄i )2
/

2σ2]√
2πσ2

.

To sample from the posterior probability distribution, we

used MCMC according to the following procedure. First, we ini-

tiated the chain with some set of values for the parameters of the

evolutionary model, x̄, and σ2 (or v). We then used Gaussian pro-

posal distributions to update the state of the chain for each parame-

ter. For proposed changes to σ2
BM or σ2 (or v) in which the proposed

value of the parameter, x, was less x ′ < 0, we set x ′ = −x ′ (that

is, we reflected across x = 0 by changing the sign of x ′). For pro-

posed changes to λ such that λ′ > max(λ) or λ′ < 0.0, in which

max(λ)indicates the maximum value of λ such that the likelihood

equations given above are defined, we set λ′ = 2 max(λ) − λ′ or

λ′ = −λ′ (for the former and latter, respectively). For an ultra-

metric tree, max(λ) can be computed as max(λ) = t/ max(tI ), in

which t is the total tree height and max(tI ) is the maximum height

of any internal node on the tree. Reflecting across the boundary

condition for the parameters maintains symmetry of the proposal

distribution as P(x ′|x) = P(x |x ′) for all x and x ′ under this proto-

col. Every generation, we proposed an updated value of σ2
B M , α, x̄,

σ2 (or v), and λ. Because x̄ and v are both vectors, updating all the

elements of each was done sequentially in separate generations

and according to the same procedure.

Given any new proposed value for a parameter, for instance

σ2′
BM in the reduced Brownian model, we accepted this change

with probability

min

(
1,

L(σ2′
B M , α, x̄, σ2) Pr(σ2′

B M , α, x̄, σ2)

L(σ2
BM, α, x̄, σ2) Pr(σ2

BM, α, x̄, σ2)

)
.

In other words, any proposal that increased the posterior

probability was invariably accepted; however, proposals decreas-

ing the posterior probability were also accepted with a probability

equivalent to the posterior odds ratio. This is the standard form

of MCMC for symmetric proposal distributions, as in this study

(Metropolis et al. 1953; Yang 2006).

We used Gaussian prior probability densities for all param-

eters except for σ2
BM and σ2 (or v), and for λ. In the case of σ2

BM

and σ2 (or v), we used an exponential prior probability density

function, whereas for λ we used a uniform density.

For all the analyses of this study, we used prior probability

densities for the species means centered on 0.0 and with a variance

of 1000 (in other words, essentially a flat prior on the range of our
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data). For σ2
BM and σ2, we again used a very uninformative prior

density: exponential with a mean of 1000; and for the uniform

prior density of λ we used the interval [0, max(λ)]. Other prior

probability densities are also possible; however, for relatively

uninformative priors, such as those chosen for this study, we found

that the method was fairly insensitive to the choice of prior.

SIMULATION TESTS

We assessed the performance of this method using four sets of sim-

ulation analyses. First, we simulated 100 pure-birth phylogenetic

trees, each containing 50 taxa. We rescaled all trees to have a total

length of 1.0 from the root node to any tip. Next, we simulated the

true species means on the tree under Brownian motion, with sev-

eral different values of the Brownian rate parameter (σ2
BM = 1.0,

2.0, 4.0, and 8.0). Then, we simulated datasets containing be-

tween one and 10 samples per species, with constant intraspecific

variability (σ2 = 0.2). In addition, we simulated species means

on the tree with constant Brownian rate parameter (σ2
BM = 1.0);

but then sampled between one and 10 observations per species

with different intraspecific phenotypic variability (σ2 = 0.2, 0.4,

0.6, 0.8, 1.0) for different simulations. Finally, we analyzed the

simulated dataset and tree using the Bayesian MCMC method of

this study with constant intraspecific variance across all species

(the Brownian reduced model).

Second, we simulated data on trees with varying numbers

of terminal species (N = 20, 50, 100, 200, 500) and then simu-

lated data using the procedure for the simulations with constant

intraspecific variance described above. We analyzed these data

using our MCMC method and the reduced model of this study.

Third, using the same set of 100 trees as in the first set of

simulations, we simulated true species means and datasets con-

taining between 10 and 30 individuals per species using a Brow-

nian rate of σ2
BM = 1.0. In this case, however, we did not assume

that the variances were constant, but assigned the intraspecific

variance for each species by drawing random values from a χ2

distribution with df = 4, but rescaled to have a mean of 0.2. This

distribution for the phenotypic variances of species was chosen

arbitrarily. Then, we analyzed the simulated dataset and tree us-

ing the Bayesian MCMC method of this study, but in which we

sampled both means and variances for the tip species of the tree

(i.e., the full model).

Finally, fourth, we simulated datasets using the λ model of

Pagel (1999). λ is normally considered on the range of (0, 1),

although we sampled λ up to its theoretical maximum (which

varies by tree). We simulated data using the following values for

λ: λ = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. Other aspects of this simula-

tion were the same as in the reduced model for constant evolution-

ary variance (σ2
BM = 1.0) and phenotypic variance within species

(σ2 = 0.2). We then analyzed this datasets using the reduced λ

model.

We ran each MCMC chain for 200,000 generations, sampling

every 100 generations. We invariably excluded the first 100,000

generations (1001 samples, including the initial state of the chain)

as burn-in. Before proceeding, we computed the effective sam-

ple sizes for each parameter, and repeatedly reran the chain for

200,000 additional generations until the effective sample sizes

for all parameters were above 30 (or until the number of loops

reached 10, in other words, 2,000,000 generations, although this

was very rare in our analyses). For each repetition, the final state

of the MCMC chain from the previous run was used to initiate the

subsequent run. We set this low effective sample size threshold

(Ne > 30) because it was difficult to automate the MCMC across

all simulation conditions and stochastic datasets in a manner that

guaranteed high effective sample sizes for all the parameters of the

model. Normally, we would recommend that users tune proposal

distributions to achieve effective sample sizes of at least Ne = 100

(as we will do with our empirical examples, described later). In

most of our MCMC runs, the majority of parameters had effective

sample sizes of Ne = 1000 or more. We computed our parameter

estimates as the arithmetic means of the post-burn-in posterior

sample. We also computed 95% credible intervals for σ2
BM , the

Brownian motion rate parameter, for each simulation. We eval-

uated the performance of the method for evolutionary inference

by computing the mean value of the evolutionary rate parameter

(σ2
BM) across simulations, and by calculating the fraction of times

that the 95% credible interval for σ2
BM included the underlying

generating value of this parameter. In addition, we evaluated the

hypothesis that the estimated species means from this analysis

would be closer to the true species means than were the arith-

metic within-species means. To measure this, we computed the

mean squared difference between the estimated means and their

true values; and we compared this mean squared error to the

mean squared error obtained from the arithmetic within-species

means. We measured bias in the estimation of the means by tak-

ing the mean difference between each set of estimated means and

their true values, and then averaging across all simulations. For

analyses in which we also sampled the intraspecific phenotypic

variances for species, we calculated the mean squared error be-

tween the estimated and generating values and mean bias in the

same way. Finally, for analyses of the λ model, we computed the

mean accuracy of the parameter estimate across simulations, as

well as the fraction of times where the confidence interval for λ

included the generating value.

EMPIRICAL EXAMPLES

In addition to the simulation tests, we also investigated the per-

formance of this method using empirical data. We identified

two datasets from the literature that offer contrasting scenarios

for the application of empirical data to this method. The first

dataset (Hulsey and Hollingsworth 2011) consisted of head length
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measurements from three individuals of each of 36 species (i.e.,

an even number of samples for each species) of cyprinid minnows

(Family: Cyprinidae) and a phylogenetic tree inferred from one

mtDNA and one nuclear gene using a concatenated and partitioned

Bayesian MCMC analysis. Head lengths were measured from the

anterior of the upper jaw to the posterior of the preopercle (Hulsey

and Hollingsworth 2011). The second dataset (Meachen-Samuels

and Van Valkenburgh 2009) consisted of between one and 55

individuals measured for skull length from each of 35 species

(i.e., an uneven number of samples per species) of felids (Family:

Felidae), and a phylogenetic tree inferred from a concatenated

4620 base pair alignment (eight mtDNA genes and one nuclear

SRY3′ gene), which is a subset of the alignments published in

Johnson et al. (2006). Skull lengths were measured from the ante-

riormost incisor to the posterior of the sagittal crest (Van Valken-

burgh and Koepfli 1993; Meachen-Samuels and Van Valkenburgh

2009). We estimated the phylogenetic tree in this group from

the available alignment using Bayesian MCMC in MRBAYES 3.2

(Ronquist and Hulsenbeck 2003). We first selected the best-fit

model of sequence evolution (GTR+I+�) using the MODELTEST

SERVER 3.8 (Posada 2006), and we set the other conditions for the

MCMC following Johnson et al. (2006). We ran the MCMC for

106 generations after a burn-in of 2 × 105 generations using the

default temperature (0.2) with four chains, sampling trees every

100 generations. We repeated this analysis twice to verify that the

MCMC chain had converged and recovered a consistent topology

across runs (Huelsenbeck and Bollback 2001).

Next, we imported the data and trees into R and then nat-

ural logarithm transformed the morphological data. We rooted

each tree using the closest outgroup taxa, after which we pro-

ceeded to prune the outgroup tips and associated internal nodes.

We then used a semiparametric method based on penalized like-

lihood (Sanderson 2002) to render each phylogeny ultrametric

using a conservative smoothing parameter of 0.1.

For each tree and dataset, we ran the Bayesian MCMC anal-

ysis for the Brownian reduced model of this study for 106 gen-

erations, sampling every 100 generations and excluding the first

250,000 generations as burn-in to achieve effective sample sizes

for all parameters of at least Ne > 100. We confirmed stationar-

ity of the MCMC chain using Heidelberger and Welch’s (1983)

convergence diagnostic implemented in the R package “coda”

(Plummer et al. 2006) with α = 0.05. We also computed 95%

credible intervals from the posterior samples for each parameter

using “coda.”

Results
SIMULATION TESTS

We conducted four sets of simulation analyses in this study. First,

we simulated Brownian evolution on 100 species trees with var-

E
st

im
at

ed
 σ

B
M

2

1:1

1.0 2.0 4.0 8.0

1.
0

2.
0

4.
0

8.
0

O
n 

95
%

 C
I

1.
0

Generating σBM
2

1.0 2.0 4.0 8.0

0.
8

0.
6

0.
4

0.
2

0.
0 0.95

A

B

Figure 1. Results from the simulation analysis of the reduced

Brownian model with constant intraspecific variance. (A) Gener-

ating and estimated values of the Brownian rate parameter, σ2
BM.

Error bars show the standard deviation (SD) across simulations.

Diagonal dashed line indicates the 1:1 line. (B) Fraction of times

that the credible interval for σ2
BM included the generating value

of σ2
BM. Ninety-five percent, the expected rate, is indicated by the

horizontal dashed line. Error bars show the standard error of the

fraction.

ious values for the Brownian rate (σ2
BM) or intraspecific variance

(σ2), for small sample size per species. We then analyzed these

data using the reduced Brownian model. Second, we simulated

data with constant σ2
BM and σ2, but for various numbers of terminal

species. We analyzed these data and trees using the reduced Brow-

nian model. Third, we simulated Brownian evolution with variable

intraspecific variances (σ2), for larger sample sizes per species;

and we analyzed these data using the full Brownian model. Fi-

nally, we simulated under the λ model of Pagel (1999), but for

constant σ2
BM and σ2. We analyzed these data under a reduced λ

model. Although we highlight only the most salient aspects of our

simulation analyses below, a detailed summary of all simulation

results is given in Appendix S2.

From the first simulation analysis, with constant intraspe-

cific variance and variable σ2
BM , Figure 1A shows the mean value
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Generating σBM
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Figure 2. Mean squared deviation between the estimated and

generating species means. Circles denote estimates obtained via

Bayesian MCMC. Triangles indicate arithmetic means. Error bars

represent the standard deviation (SD) across simulations.

of the evolutionary rate parameter (estimated from the posterior

sample in each analysis) plotted against the generating value of

σ2
BM . The error bars represent ±1 standard deviation (SD) from the

variance in parameter estimates among simulations. The dashed

line shows the line along which estimated and generating σ2
BM

are equal; clearly the mean evolutionary rate estimate is slightly

upwardly biased. Figure 1B shows the frequency with which the

95% credible interval for σ2
BM included the generating value for

σ2
BM across simulation conditions. Error bars are the 95% con-

fidence limits on these frequencies. The observed fraction is not

significantly different from the expected fraction (0.95) under any

of the simulation conditions explored here (Fig. 1B). In addition

to evaluating the accuracy of evolutionary parameter estimation,

we also computed the mean square deviation (MSE) between the

model estimated and generating species means at the tips of the

tree. We compared this MSE to the MSE between the generating

and arithmetic means calculated in the standard way. The MSE

from the Bayesian MCMC is considerably smaller than the MSE

from the arithmetic means (Fig. 2), indicating that the tree and

evolutionary model provide useful information in estimating the

species means that are consequently more accurate than when

the tree is ignored. This effect is largest for the largest value of

σ2/.σ2
BM (i.e., when the intraspecific variance is relatively large

compared to the variance of the Brownian evolutionary process).

Note that the error bars shown in this figure are SDs among sim-

ulation results; not confidence intervals on the average MSEs,

which would have been much smaller. Bias in both the Bayesian

and arithmetic species means was nonexistent for this simulation,

and indeed for all the simulations of this study, and will not be

discussed further.

We obtained similar results when we varied the intraspe-

cific variability among simulations. Figure 3A shows the gen-
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Figure 3. Results from simulation analysis of the reduced Brow-

nian model with constant evolutionary rate, σ2
BM. (A) Generating

and estimated values for the common within-species variance, σ2

(error bars as in Fig. 1A and B) Mean squared deviation between

the estimated and generating species means. Circles, triangles, and

error bars as in Figure 2.

erating and mean estimated values for the intraspecific variance

parameter, σ2, across simulation conditions, along with the SD

among simulations obtained for a given value of σ2. Here, the

within-species variance (σ2) is estimated with high accuracy for

all simulation conditions. In addition, the accuracy (MSE) of the

model-fitted species means is considerably better than for their

arithmetic counterparts, particularly as the intraspecific variability

(σ2) is increased (Fig. 3B).

In our second set of simulations we also varied the size (i.e.,

the number of tip taxa) of the stochastic phylogenetic trees used

in our simulation and analyses, now holding σ2
BM and σ2 constant.

Figure 4 shows the mean parameter estimate for σ2
BM across the

range of tree sizes explored in these simulations. We can see from

this analyses that the positive bias found for σ2
BM for trees of size

N = 50 decreases substantially for larger N. Thus, the Bayesian

estimator seems to be asymptotically unbiased. Of additional in-

terest is the fact that the bias in σ2
BM is in the opposite direction
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Figure 4. Mean estimated σ2
BM for phylogenies with various num-

bers of terminal species.

(upward instead of downward) from maximum-likelihood (ML)

estimation of the same parameter when the true species means are

known (O’Meara et al. 2006).

In addition to these analyses of the reduced model, for our

third set of simulations we simulated and analyzed under the full

model—that is, a model in which each tip taxon is assigned a

separate intraspecific phenotypic variance for the character under

study. Representative results are shown in Figure 5. Figure 5A

shows the generating and model-fitted species means for one

simulation, and Figure 5B shows the generating and model-fitted

intraspecific variances. Although the species means are estimated

with little error, the estimated within species variances are slightly

biased in an upward direction both in this individual simulation

and across simulations (Table S5). In contrast to the Bayesian

estimates of the species means, our equivalent estimates of the

variances are less accurate than the standard population variances

(Table S5). This is not particularly surprising because the tree

can provide only limited help in improving the accuracy of our

estimated variances (by improving the accuracy of the species

means) as the variances did not evolve on the tree, but were

sampled randomly from a χ2 distribution.

Although this article focuses primarily on a Brownian model

of evolutionary change, to illustrate the generality of our ap-

proach we also conducted a final set of analyses in which we

simulated and estimated under Pagel’s (1999) λ model. This

model is a simple extension of Brownian motion in which the

expected covariances between related species are downweighted

by factor λ. Figure 6 shows a plot of the generating values for

λ against the mean estimated value, with the error bars showing

the SD among simulations. λ is estimated with an upward bias

when the generating value of λ is small, and a downward bias

when the generating value of λ is large. This is particular evident

for simulations in which the generating value of λ was λ = 0.0

(Fig. 6). This bias does not characterize ML estimation of λ and
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Figure 5. Representative result from simulation analysis of the

full Brownian model. (A) Generating and estimated species means.

(B) Generating and estimated species-specific variances.
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it may be that as there are bounds on the parameter space for

λ beyond which the likelihood is not well defined, the posterior

sample for λ cannot be symmetric when the generating value is

near these bounds. This would explain the observed pattern and

might suggest that another metric for summarizing the posterior

sample for λ (the median or mode, for instance) might be more

appropriate.

As with the Brownian model, we found that Bayesian esti-

mates of the species means were generally better than their arith-

metic counterparts (Table S5). This was even true for simulated

λ = 0.0, although the improvement in this case is nonsignificant.

We strongly suspect that the improved accuracy of the Bayesian

species means when λ = 0.0 (and thus the tree contains no phylo-

genetic information about the species mean trait values) is actually

an artifact of our study design. This is because we simulated data

assuming a constant intraspecific variance for all species. Sam-

pling from the posterior distribution assuming this model (as we

have done with the reduced λ model) better approximates the

true sampling distribution of x̄—even if the tree contains no ad-

ditional information about the true species means. This improve-

ment is very minor and much smaller than the improvement in

accuracy of species means estimation that is achieved by incorpo-

rating phylogenetic information when phylogenetic signal is high

(Table S5).

EMPIRICAL EXAMPLES

We analyzed two datasets using the methods of this article.

First, we analyzed a dataset for cyprinid head length and a tree

published by Hulsey and Hollingworth (2011). Second, we in-

ferred the Bayesian maximum clade credibility tree from a pub-

lished felid alignment (Johnson et al. 2006), and analyzed this

with existing data for felid head length (Van Valkenburgh and

Koepfli 1993; Meachen-Samuels and Van Valkenburgh 2009).

Morphological datasets, the minnow phylogenetic tree (Hulsey

and Hollingsworth 2011), and the felid alignment (Johnson et al.

2006) are publicly available.

Our estimated felid tree was topologically congruent with the

published tree of Johnson et al. (2006). We have appended our in-

ferred felid tree in the Appendix S3. We analyzed each dataset and

tree using the reduced Brownian model and MCMC conditions

described in the Methods section, above. We tuned the conditions

of the MCMC to ensure that all parameter effective sample sizes

were larger than Ne > 100 (in most cases Ne > 1000, see Table 1).

We have reported individual parameter effective sample sizes,

mean values of σ2
BM , α, and the uniform intraspecific variance,

σ2, for each analysis, along with the 95% highest posterior

density (HPD) intervals in Table 1. Bayesian species means

from the fitted model and arithmetic means are also reported in

Appendix S4. Because we do not know the true generating model

in either of these cases, we will not comment on the accuracy of

the fitted models; however, we will note that the estimated species

means from the Bayesian posterior sample are very close to the

arithmetic species means. This is expected when intraspecific

variance is low, and inspection of our empirical data suggests that

indeed intrapsecific variance is low compared to the differences

among species for these datasets.

Discussion
Comparative methods for the study of phenotypic change in the

context of phylogenetic trees have evolved considerably in recent

years. Where the study of continuously valued traits is concerned,

investigators are typically interested in the evolution of species

mean trait values over time. Yet, in nearly all empirical datasets

the true species mean is unknown and one is forced to substitute

a population mean (sometimes known by as few as one or two

specimens, see Harmon and Losos 2005).

Two recent articles (Ives et al. 2007; Felsenstein 2008) pre-

sented alternative (although closely related, see Felsenstein 2008,

p. 714) approaches to the problem of incorporating uncertainty in

the estimation of species means. In the method of Ives et al. (2007),

for instance, the means and sampling variances of species are first

calculated; and then we compute the likelihood of the evolution-

ary parameters conditioned on the sampled means and variances,

evolutionary model, and phylogenetic tree. In the present article,

we offer a different paradigm. Here, the tree and the data for in-

dividuals serve as input to the analysis. Then, we use Bayesian

MCMC to simultaneously sample from the joint posterior dis-

tribution of the parameters of our evolutionary model, species

means, and intraspecific phenotypic variances.

The preliminary results revealed by applying this approach

to empirical and simulated data in this study are quite encour-

aging. First, although perhaps least notably, we found that the

method provides asymptotically unbiased estimates of the gener-

ating evolutionary model parameters (Fig. 4). The bias for small

phylogenetic trees was in the opposite direction of the well-known

bias in maximum likelihood estimation when the species means

are known without error (O’Meara et al. 2006; Revell 2008). In

particular, the Brownian evolutionary rates estimated using our

Bayesian method were too high (at least given the prior probabil-

ity densities that we chose for the analyses of this article) for trees

with few taxa (Figs. 1A, 4). Second, we found that the accuracy

of the Bayesian estimated species means is considerably better

than the accuracy of the arithmetic species means under both the

reduced and full models (e.g., Figs. 2, 3B). This indicates that

accounting for the tree and evolutionary model can improve our

estimation of the true species means. This is particularly true

when the intraspecific variance is high relative to the divergence

between species (Fig. 3B). Although this result is very intriguing,

if we look closely at the results from the analysis of our empirical

2 7 0 4 EVOLUTION SEPTEMBER 2012



COMPARATIVE METHOD

Table 1. Results from analyses of empirical datasets. Sample sizes are given as the effective sample size (Ne) from the posterior sample

after 106 generations of MCMC minus a 250,000 generation burn-in, sampled every 100 generations. Means for σ2
BM, α, and intraspecific

variance (σ2) are given as averages with the 95% bounds of the highest posterior density (HPD) interval (lower, upper) from the MCMC

analysis.

Mean from Effective
Dataset Parameter posterior sample 95% HPD sample size

Minnows σ2
BM 0.0992 (0.0544, 0.1526) 1731.9

α 2.5476 (2.2008, 2.8872) 130.97
σ2 0.0022 (0.0015, 0.0031) 1061.6

Felids σ2
BM 0.1207 (0.0655, 0.1803) 1871.1

α 4.9400 (4.6464, 5.219) 215.00
σ2 0.0081 (0.0068, 0.0092) 1283.7

datasets we find that the Bayesian fitted species means can be

very close to the arithmetic means (Table S6). This will generally

be the case when the within-species variance is small because un-

der those conditions the log-likelihood is quickly dominated by

the second product for sampled species means that differ substan-

tially from the arithmetic within-species means. Indeed, in our

empirical datasets the fitted within species variances were very

small (Table 1).

Herein we focus on the ever popular, sometimes maligned

(e.g., Price 1997; Butler and King 2004), Brownian model for evo-

lutionary change on the tree (Cavalli-Sforza and Edwards 1967;

Felsenstein 1985; O’Meara et al. 2006; Revell 2008); however,

we emphasize that the general paradigm that we present in this

article is applicable to any model for the evolution of continuously

valued character traits in the context of a phylogeny. To illustrate

this point, we apply the method to the λ model of Pagel (1999).

We found that estimated values for λ taken as the mean of the

posterior distribution were slightly biased. This bias tended to be

in an upward direction for small generating λ and downward for

high λ (Fig. 6). This is most likely due to asymmetry in the pos-

terior probability density near the bounds of λ and suggests that

the posterior sample mean might be a poor metric with which to

summarize the posterior distribution of λ.

As the approach outlined herein is applicable to multiple

models of evolutionary change in quantitative traits on the tree

(e.g., Blomberg et al. 2003; Butler and King 2004; O’Meara

et al. 2006), it is appropriate to consider comparison among mod-

els. According to our method the posterior distribution is sampled

by MCMC, rather than optimized directly. Consequently, we can-

not compare among models using AIC or BIC, in which an opti-

mized value of the likelihood function is required. One option is

to compare among models by way of the DIC or “Deviance Infor-

mation Criterion” (Spiegelhalter et al. 2002). DIC is computed as

follows:

DIC = pD − D̄

in which D̄ is merely the posterior mean log-likelihood. The

measure of model complexity, pD , is computed as pD = D̄ −
D(θ̄) in which D(θ̄) is the value of the likelihood function at the

posterior mean for the parameters of our model. We would choose,

in this case, the model with the lowest DIC. Comparison of DIC

values for two different models might tell us whether we should

prefer the reduced or full Brownian motion models; or whether

we should prefer the Brownian or λ model. Ando (2007) has also

proposed the Bayesian Predictive Information Criterion (BPIC),

which he shows has superior statistical properties to the DIC.

In the models presented herein, we assume either: that the in-

traspecific variance is the same across all species; or that intraspe-

cific variance differs among species, but is random with respect to

the tree. An alternative intriguing possibility is that intraspecific

variance differs among species in a phylogenetically autocorre-

lated manner. We expect that this will be an important area of

future research based on our approach; however, any attempt to

phylogenetically model the evolution of intraspecific variance on

the tree should be performed with caution. This is because the

expected evolutionary dynamics of the additive genetic variance

are equilibrial and non-Gaussian (and thus very non-Brownian;

Bürger et al. 1989; Jones et al. 2003; Revell 2007); and we expect a

part–whole correlation between the additive genetic variance and

the phenotypic variance within species (Falconer and MacKay

1996; Lynch and Walsh 1998).

Phylogenetic methods and “tree-thinking” have become

ubiquitous in modern evolutionary biology over the past 25 years.

Phylogenetic comparative methods have considerable potential in

helping us to understand more about the history of life on this

planet. Although method development in this field has advanced

rapidly, there remains considerable new progress to be made. In

this short article, we present both a novel method and paradigm for

the analysis of interspecies data with intraspecific variability. We

hope this new approach to the analysis of interspecific data with

intraspecific sampling variation in comparative studies stimulates

additional research in this area.
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Appendix S2. Summary of results for all simulations.
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Appendix S4. Fitted and arithmetic means from empirical analyses.

Table S1. Summary of results from simulation analyses of the reduced Brownian model in which the rate of evolution, σ2
BM , was

varied across simulations, but the intraspecific variance, σ2, was held constant.

Table S2. Summary of results from simulation analyses of the reduced Brownian model in which the rate of evolution, σ2
BM , was

held constant while the intraspecific variance, σ2, was varied among simulations.

Table S3. Summary of results from simulation analyses of the reduced Brownian model for varying tree size (i.e., number of tip

taxa, N).

Table S4. Summary of results from the full Brownian model.

Table S5. Summary of results from the reduced λ model.

Table S6. Fitted and arithmetic means from the empirical analyses.
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