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ABSTRACT

Question: Is the pattern of phenotypic divergence among populations influenced by
constraint in the form of the genetic covariances among characters?

Background: Quantitative genetic theory predicts that when evolutionary lineages diverge
simultaneously by genetic drift, the pattern of among-population divergence will parallel the
pattern of within-population genetic variation and covariation. Among-population divergence
is measured by the variance–covariance matrix of population means (the D matrix), or by the
variance–covariance matrix of independent contrasts (DIC). The latter avoids the assumption of
simultaneous divergence by incorporating phylogenetic non-independence among lineages and
was developed expressly for this study. Within-population genetic variation and covariation are
measured by the additive genetic variance–covariance matrix (the G matrix).

Organism: The Puerto Rican crested anole (Anolis cristatellus).
Methods: We sampled A. cristatellus from seven divergent populations widely dispersed

across the species’ range. These populations are sufficiently highly diverged to be considered
evolutionarily independent lineages. We substituted the phenotypic variance–covariance matrix
(P matrix) for G in evolutionary analysis. (Empirical studies have shown that P and G are
frequently highly correlated for morphological traits.) In two populations, we estimated
phenotypic variance–covariance matrices (P matrices) for 13 skeletal morphological traits,
while in the remaining five we estimated mean phenotypes for the same traits. To test the
hypothesis of constraint, we first calculated a pooled phenotypic variance–covariance matrix
(P̄̄) from all populations. We compared P̄̄ to the variance–covariance matrix of population
means (D) and of independent contrasts (DIC). Independent contrasts were calculated using a
molecular phylogeny of the included lineages.

Results: Comparison of P matrices between populations showed evidence that covariance
structure is highly conserved in conspecific populations of A. cristatellus. Comparison of P̄̄ with
D and of P̄̄ with DIC indicated significant similarity in both cases, suggesting that constraint has
influenced phenotypic evolution and thus probably genotypic evolution in this species.
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INTRODUCTION

A perennial challenge in evolutionary biology is to quantify the effects of constraint on the
course and outcome of phenotypic evolution (Maynard Smith et al., 1985; Barton and Partridge, 2000).
Genetic constraint resulting from additive genetic correlations among characters is often
postulated to play an important role in evolution (Cheverud, 1984; Arnold, 1992; Arnold et al., 2001).
Such constraint tends to cause genetically correlated traits to evolve together, biasing the
path of multivariate phenotypic evolution away from that which maximizes the increase in
mean fitness (Lande, 1979; Schluter, 1996, 2000; Arnold et al., 2001; Fornori et al., 2003). In particular, the single
generation response to selection in a given trait is a function of the additive genetic variance
for the trait, the selection gradient, β, or partial regression coefficient of fitness on pheno-
type, the linear selection gradients on other traits, and the genetic covariances between them
(Lande, 1979; Lande and Arnold, 1983). Expressed another way, ∆z̄ = G�, where ∆z̄ is a vector of the
change in population means for traits, G is a square matrix with additive genetic variances
on the diagonal and covariances elsewhere, and � is a vector of selection gradients (Lande, 1979;

Lande and Arnold, 1983). Consequently, the short-term phenotypic response to selection is rarely
in the direction of greatest increase in mean fitness, �. As such, the genetic variances for and
covariances between traits can play a central role in constraining the course of phenotypic
evolution.

By extension, when many closely related populations or species simultaneously radiate
from a common ancestor while experiencing similar genetic constraints, the pattern of
multivariate phenotypic differentiation among populations is also influenced by genetic
constraint. In particular, under genetic drift and selection, the pattern of divergence is a
function of G, the elapsed time (t), the effective population size (Ne), and the variance–
covariance matrix of multivariate selection gradients (cov[�]) (Lande, 1979; Felsenstein, 1985; Hansen

and Martins, 1996; Arnold et al., 2001). With no net selection, this function simplifies to D = (t/Ne)G
under genetic drift alone, where D is the variance–covariance matrix of population means
for traits summarizing the multivariate divergence among populations (Lande, 1979; Blows

and Higgie, 2003). In general, then, if evolution is primarily by genetic drift, the pattern of
multivariate phenotypic differentiation among populations will be correlated with the
pattern of genetic variation within them (Kluge and Kerfoot, 1973; Sokal, 1978; Lande, 1979; Björklund

and Merilä, 1993; Schluter, 1996; Arnold et al., 2001; Bégin and Roff, 2004). Genetic constraint thus makes some
patterns of phenotypic diversification among populations or species more probable than
others.

Lande’s (1979) equations rely implicitly on a simultaneous radiation of the populations
under study from a single common ancestor. However, they can be readily extended to
the more realistic case of bifurcating phylogenetic relationships among taxa. Using the
assumption of a Brownian motion model of character evolution (which is the appropriate
model for genetic drift under many circumstances), the phenotypic variance among taxa
descended from a common ancestor is proportional to the product of the time elapsed and
the mean rate of evolution for that trait in the involved lineages (Lande, 1979). When taxa
radiate according to a bifurcating phylogeny, the mean rate of phenotypic evolution for a
character can be estimated by the mean square of the independent contrasts (Felsenstein, 1985;

Garland, 1992; Garland et al., 1992; Martins, 1994). Similarly, the mean cross-product of the independent
contrasts for two characters has an expected value proportional to their mean rate of
co-evolution. Thus, phylogenetic non-independence among included species or evolution-
arily independent populations can be incorporated by calculating the mean squares and
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mean cross-products (MS-MCP) matrix of independent contrasts, which we designate
herein as DIC, and substituting this matrix for D in tests of the constraint hypothesis. This
is similar to the test of Baker and Wilkinson (2003) in which the correlation matrix of
independent contrasts was used. However, using the MS-MCP matrix allows the direct test
of the hypothesis that the rate and direction of correlated character evolution among popu-
lations corresponds to the amount and direction of phenotypic variation within popula-
tions, whereas the correlation matrix of independent contrasts tests only the hypothesis that
genetically correlated characters evolve together.

Some previous tests of the constraint hypothesis revealed evidence that genetic constraint
is important (Sokal and Riska, 1981; Schluter, 1996; Baker and Wilkinson, 2003; Bégin and Roff, 2003, 2004;

Marroig et al., 2004), while others found no or only weak correspondence between D and G
(Lofsvold, 1988; Venable and Burquez, 1990; Merilä and Björklund, 1999; Badyaev and Hill, 2000). Although
contributing greatly to our understanding of the general importance of constraint, a
shortcoming of these studies (Baker and Wilkinson, 2003, excluded) is their failure to account for
the phylogenetic non-independence of the taxa included in the study.

Ideally, studies of genetic constraint should compare the structure of DIC with that of G,
the additive genetic variance–covariance matrix. Unfortunately, in many species G is not
particularly amenable to estimation. In these cases, the pattern of phenotypic variation and
covariation – the P matrix or phenotypic variance–covariance matrix – is sometimes used in
lieu of G for evolutionary analyses (Cheverud, 1988; Reusch and Blanckenhorn, 1998; Waitt and Levin, 1998).
Since P = G + E, where E is a matrix of environmental variances and covariances, there is
considerable debate about under what circumstances P will resemble G (Cheverud, 1988; Willis et

al., 1991). Some empirical evidence suggests that they are often highly correlated, particularly
for morphological traits (Cheverud, 1988; Roff, 1995; Reusch and Blanckenhorn, 1998). Furthermore, assum-
ing that E and D are uncorrelated, discordance between P and G will probably increase only
type II, not type I, error rates in the test for constraint employed in this study.

In this study, we utilize the pattern of phenotypic variances for and covariances among
quantitative traits (the P matrix) to study multivariate evolution in a neotropical lizard,
Anolis cristatellus, the Puerto Rican crested anole. Lizards in the genus Anolis, or anoles, are
a model adaptive radiation, with over 150 species of diverse morphologies known from the
Caribbean isles alone (Williams, 1972). Repeated evolution of similar forms on different islands,
with inter-island convergents termed ‘ecomorphs’, has often been cited as evidence for the
potency of natural selection in an adaptive radiation (Losos et al., 1998). However, previous
studies of phenotypic diversification in Anolis have largely neglected the possible import-
ance of genetic constraint. This study focuses on characterizing the importance of con-
straint at the level of phenotypically differentiating populations of a single species. As such,
this paper constitutes the first direct test of the importance of constraint in phenotypic
evolution in anoles.

This study uses data collected from seven highly divergent populations of A. cristatellus
to (1) test the hypothesis that covariance structure is conserved at the intraspecific level in a
widespread species, and (2) test the hypothesis that the pattern of genetic variances and
covariances within populations is aligned with the pattern of phenotypic differentiation
among them. The latter is a test of the constraint hypothesis (Bégin and Roff, 2004), and
thus positive evidence in this test would suggest that genetic constraint has influenced the
phenotypic differentiation of populations of A. cristatellus. In addition to characterizing
the role of constraint on morphological evolution in a species of anole, we also (3) compare
the results from tests of the constraint hypothesis conducted in both non-phylogenetic and
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phylogenetic contexts, and (4) evaluate the extent to which correspondence between P and
the divergence matrices derived from the population means for traits (D and DIC) could
arise due to sampling error in the estimation of population means.

METHODS

Overview

To investigate the stability of the pattern of phenotypic covariation at an intraspecific level,
we estimated P, the phenotypic variance–covariance matrix, for each of two highly
divergent populations of A. cristatellus, chosen for the substantial intraspecific genetic
differentiation known to exist between them (R.E. Glor et al., in preparation; see also Results). Using
matrix comparison (Mantel test, random skewers, CPCA, the T method), we then evaluated
the evolutionary stability of covariance structure at an intraspecific level.

To investigate the role of constraint in morphological differentiation, we estimated multi-
variate mean phenotypes for five additional populations widely spaced across the species’
range. In all, we estimated within-group phenotypic covariance matrices (P matrices) for
two populations, and multivariate mean phenotypes for seven populations.

To test the hypothesis that intraspecific differentiation among populations is influenced
by constraint imposed by the pattern of variation and covariation within populations, we
compared the alignment of the variance–covariance matrix of population means for traits,
D, with the phenotypic variance–covariance matrix, P. When D is estimated from the
multivariate phenotypes of individuals drawn from populations or species that share
common history, calculating D ignoring the phylogeny or phylogeographic tree relating
species or populations in the sample may not be appropriate. Thus, we estimate a
bifurcating tree from molecular sequence data for the seven populations of interest in
this study. We also calculate DIC, the mean squares and mean cross-products (MS-MCP)
matrix of multivariate independent contrasts (Felsenstein, 1985; Baker and Wilkinson, 2003), and
compare P to DIC.

Finally, P and D or DIC may also be aligned because phenotypic traits with high variance
within populations have means subject to high error in their estimation. Thus, we use a
bootstrap randomization procedure to test the hypothesis that the correlation between P
and D and that between P and DIC exceed the correlations expected as a consequence of
sampling error in the estimation of D and DIC.

Morphological measurements

We collected a total of 357 adult males from seven populations of A. cristatellus. Two of
these populations were focal populations for P matrix estimation. The first (n = 156) was
located on the southeast coast of the main island of Puerto Rico, near Puerto Yabucoa
(YAB; Fig. 1A). The second (n = 141) was on a peninsular cay on the south coast of the
island of Vieques, a satellite island located approximately 20 km east of the main island
(VIE; Fig. 1A). The remaining five populations, widely dispersed across the main island,
were San Juan (SJU; n = 12), Fajardo (FAJ; n = 12), Salinas (SAL; n = 12), Maricao (MAR;
n = 11), and Rincon (RIN; n = 13) (Fig. 1).

We fixed all specimens in 85% ethyl-alcohol, and collected X-ray radiographs using a
Hewlett-Packard Faxitron cabinet X-ray System. We digitized all X-rays using a flatbed film
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Fig. 1. (A) A map of Puerto Rico depicting the localities from which specimens were collected. Focal
populations for P matrix estimation were Puerto Yabucoa (YAB) and Cayo de Tierra, Vieques (VIE).
(B) A phylogeny of the sampled populations, estimated from ND2 (mtDNA NADH 2 gene),
tRNATrp, and tRNAAla sequence using ML in PAUP*.
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scanner. We collected measurements for 13 morphological traits from each X-rayed lizard
using the computer program tpsDig (Rohlf, 2005). The 13 traits were skull length, skull width,
first metacarpal length, radius length, ulna length, humerus length, pectoral girdle width,
pelvis width, femur length, tibia length, fibula length, and first and second metatarsal
lengths. We measured body length skeletally by digitizing the posterior processes of each
vertebra between the base of the skull and the base of the pelvis and summing the distances
between them. We also measured snout-to-vent length (SVL) externally. Snout-to-vent
length and body length measured skeletally were highly correlated (r = 0.96), but skeletal
body length had slightly lower standardized variation [CV(skeletal body length) = 0.071;
CV(SVL) = 0.081], which implies that it was measured with less error, and as such is used in
all subsequent analyses.

For all bilaterally symmetrical traits, we took measurements from both right and left sides
of each individual and averaged them. This procedure minimized the measurement error
variance as well as other non-genetic causes of variation such as fluctuating asymmetry
(Lynch and Walsh, 1998).

P matrix estimation and comparison

We natural logarithm transformed all morphological measurements and removed the effect
of size from all traits by calculating the residuals from standard least squares linear
regressions of each trait on skeletally measured body length. We calculated P using
standard methods for the estimation of variances and covariances. We estimated the
standard errors of the elements of P by a delete-one jackknife approach (Manly, 1997).

Several different matrix comparison methods exist (Steppan et al., 2002), and there is con-
siderable contention about their relative merits (e.g. Bégin et al., 2004). It is not our intention
to compare existing methods; however, due to their potential to yield different information
about the manner in which matrices vary (Steppan et al., 2002; L.J. Revell, submitted), we compared
P matrices using several methods. Methods used included the Mantel test (Mantel, 1967),
random skewers (Cheverud et al., 1983), common principal components analysis [CPCA (Flury, 1988;

Steppan, 1997; Phillips and Arnold, 1999)], and the T method (Roff et al., 1999).
We used a Mantel test to test for similarity of the phenotypic correlation matrices. This

test involves calculating the matrix correlation (rM) in the typical way, and then randomly
permuting the rows and columns together in the dependent matrix, each time recalculating
r�M from the permuted matrices. One-tailed significance is evaluated as the fraction of times
in which r�M ≥ rM.

A shortcoming of the Mantel test is that it cannot be used for covariance matrices
(Dietz, 1983). Random skewers (Cheverud et al., 1983; Cheverud, 1996; Marroig and Cheverud, 2001) is a method
that can be applied to covariance matrices. With random skewers, matrices are multiplied
by random selection vectors and the correlation coefficient between the resultant response
vectors (rs) is calculated and averaged across a large number of random vectors. The test
statistic is thus the mean vector correlation coefficient, and its significance is determined by
comparison to the expected distribution of correlations between random vectors (Cheverud,

1996). We used random skewers to test for similarity of the phenotypic covariance matrices.
Common principal components analysis provides a very useful framework in which to

test a series of alternative hypotheses of matrix similarity beginning with the test of one
common principal component versus unrelated structure, and ending with matrix equality
versus matrix proportionality (Flury, 1988; Steppan, 1997; Phillips and Arnold, 1999). At each step in the
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hierarchy, a likelihood ratio test is used to determine whether adding additional parameters
(e.g. proportionality has one more parameter than equality: the proportionality constant)
significantly improves the model fit to the data (Phillips and Arnold, 1999). The likelihood ratio is
evaluated against a χ2 distribution with degrees of freedom determined by the difference in
the number of parameters in the CPCA models. Models are evaluated hierarchically, and
the appropriate CPCA model is selected when the likelihood ratio test is not significant.
An alternative approach to CPCA model selection [‘model-building approach’ (Phillips and

Arnold, 1999)] utilizes the Akaike information criterion [AIC (Akaike, 1973; Phillips and Arnold, 1999)], a
statistic that weighs the goodness of fit of a model against the number of parameters used
to fit that model. Under this approach, the best fitting CPCA model is selected because it
has the lowest value for the AIC (Phillips and Arnold, 1999). Common principal components
analysis provides considerable information about the manner in which matrices share
common structure. However, it is affected by limitations identified in previous studies
(Steppan, 1997; Phillips and Arnold, 1999; Ackermann and Cheverud, 2000; Marroig and Cheverud, 2001; Steppan et al., 2002).
We used CPCA to compare phenotypic covariance matrices.

With the exception of CPCA (in which several hierarchical hypotheses are tested,
including one of matrix equality) the matrix comparison methods discussed in the above
paragraphs use a null hypothesis of no shared structure. However, this null may be
inappropriate for evolutionary data in which covariance matrices are estimated for popula-
tions or species connected by gene flow or united by common history (Turelli, 1988). As such,
we also use the T method of Roff et al. (1999), which explicitly utilizes a null hypothesis of
matrix equality. In this test, the observed sum of absolute values of the differences between
the elements of two matrices, P1 and P2 (Tobs), is compared to the sum of the absolute values
of the differences between the elements of phenotypic covariance matrices obtained when
individuals (as multivariate deviations from their population means) are permuted randomly
between populations (Tr). The significance of the test is calculated as the proportion
of times that the value of Tr from the randomization test exceeds Tobs (Roff et al., 1999). The
sum of squared differences between the elements of P1 and P2 (or T 2

obs) can alternatively
be used (Roff et al., 1999). We compared phenotypic covariance matrices using both the T and
T 2 tests.

Phylogeny estimation

We sampled for mitochondrial DNA (mtDNA) sequence one specimen per population
from each of the seven populations represented in this study (Fig. 1A). Other genetic results
from this species have generally found little mtDNA genetic variability within populations
(R.E. Glor et al., in preparation; J.J. Kolbe, unpublished), thus we deemed one individual per population to
be adequate phylogeographic sampling. We extracted genomic DNA from liver or muscle
tissue stored in 95% ethanol using Viogene Tissue Extraction Kits (Viogene, Inc.). Using the
polymerase chain reaction, we amplified approximately 1200 bases of the mitochondrial
genes ND2 (NADH dehydrogenase subunit 2), tRNATrp, and tRNAAla using an initial
denaturation of 95�C for 35 s, annealing at 53�C for 35 s, and extension at 70�C for 150 s
for 30 cycles. We purified all PCR products on 1.0% low-melt agarose gel and extracted
template using Viogene Gel Extraction Kits (Viogene, Inc.). We sequenced template in both
directions using ABI Prism Dye Terminator Cycle Sequencing Ready Reaction Kits
with AmpliTaq DNA polymerase (Perkin Elmer) using the primers H5730, L4882c, and
L4437. We analysed sequencing products on an ABI Prism 3700 DNA Analyser (Applied
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Biosystems) according to the manufacturer’s protocols. DNA sequence alignment was
mostly unambiguous as there were no insertions or deletions through much of the
sequenced region among our samples, with the exception of within the tRNA genes which
we aligned manually according to secondary structure models.

We estimated the tree and branch lengths using Maximum Likelihood (ML) in PAUP*
4.0b10 (Swofford, 2002) under the GTR + I + Γ model of nucleotide substitution and assuming
a molecular clock. The phylogenetic analysis included the seven sequences generated for this
study, as well as ND2, tRNATrp, and tRNAAla sequence from closely related Anolis scriptus
(GenBank accession: AY296200). We used A. scriptus sequence only to root the phylogeny
and excluded it from all subsequent analyses.

Comparison of P and D

To assess the extent to which populations were differentiated in phenotype, we performed a
multivariate analysis of variance (MANOVA) with the morphological data as dependent
variables and population of origin as the independent variable.

Due to the high matrix similarity between the focal populations for P matrix estimation
(see Results), data from all seven populations were pooled to estimate a phenotypic
variance–covariance matrix for use in all comparisons with D. The pooled matrix
was calculated in a standard way by estimating P for all populations and calculating the
element by element weighted mean, P̄̄, of all separate P matrices (Manly, 2005). Weights were
proportional to the sample sizes of the populations. This procedure generates a pooled
within-population variance–covariance matrix correcting for the mean differences among
populations. To test the hypothesis that constraint has influenced the pattern of phenotypic
differentiation among populations, we compared this matrix, P̄̄, with D, the variance–
covariance matrix of population means for traits. In addition to calculating D, we also
computed DIC, a phylogenetically independent variance–covariance matrix of population
means for traits. DIC was calculated as the mean squares and mean cross-products matrix of
standardized multivariate independent contrasts for traits.

The conceptual justification for the estimation of the among-population variance–
covariance matrix in this way arises from the prediction, derived from Lande (1979), that if
many species or populations simultaneously radiate from a common ancestor under drift
and constraint, they have an expected variance–covariance matrix of population means (D)
proportional to G. Assuming that the ancestral state is equivalent to the mean of the
descendants, D in this analysis is exactly equivalent to the mean squares and mean
cross-products matrix of the set of ∆z̄ vectors, in which ∆z̄i is a vector of the net change in
multivariate mean phenotype between the common ancestor and the taxon, i, under study
(Fig. 2). In the contrasts matrix, calculating the mean squares and cross-products matrix of
all ∆z̄ vectors along internodes and terminal branches in the phylogeny would inflate the
degrees of freedom of the variances and covariances, since ancestral states for nodes are not
known independently of the states at descendant nodes. Instead, we utilize independent
contrasts, which do not inflate the degrees of freedom of the test (Fig. 2). We standardized
the contrasts by dividing them by the square-root of the corrected branch lengths, following
Felsenstein (1985), and then mulitplying by the square-root of two times the total tree depth.
This is equivalent to standardizing all contrasts so that they have an expected variance
equivalent to a contrast taken through the root of the tree, but contrasts can be standard-
ized in any way so long as they have the same expected variances after correction. This
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standardization procedure is exactly as described by Felsenstein (1985), but contrasts are not
standardized to have unit variance.

This procedure is similar to that used by Baker and Wilkinson (2003), but we substitute the
MS-MCP matrix of independent contrasts (DIC) for the correlation matrix of independent
contrasts. This substitution is preferred because Lande’s (1979) equations predict alignment
of within- and among-population variance–covariance matrices under genetic drift –
a more specific prediction than the alignment of correlation matrices. Here and elsewhere,
alignment is measured by several methods including matrix correlation and eigenanalysis.

We conducted matrix comparisons using the Mantel test on correlation matrices and
random skewers on covariance and MS-MCP matrices (described above). The first three
eigenvalues account for the vast majority of variance in both the P̄̄ and D matrices. To
quantitatively compare the eigenstructure of P̄̄ with that of D and DIC, we calculated the

Fig. 2. An illustration of the two methods used to measure the effects of constraint on phenotypic
differentiation. In (A), D, the variance–covariance matrix of population means for traits, is calculated
ignoring the non-independence of population means due to common ancestry. If the true phylogeny
is a star as pictured, and the ancestral state of all descendants is assumed to be their multivariate
arithmetic means, then D is exactly equivalent to the mean squares and cross-products matrix of
the vectors of change in mean phenotype, ∆z̄. In (B), the mean squares and cross-products matrix of
the vectors of change in mean phenotype are estimated directly from the independent contrasts of the
mean phenotype vectors. This provides DIC, the variance–covariance matrix (or, more accurately, the
mean squares and cross-products matrix) of independent contrasts. Here, z̄ at a node followed by a
subscripted nested set of all the descendants of that node indicates the vector of reconstructed
character states at that node. Furthermore, the notation ∆z̄i vs. j indicates the independent contrast
between nodes i and j. Although not illustrated here, in our analyses all contrasts for a given trait were
corrected following Felsenstein (1985) to account for error in the estimation of ancestral character
states, as well as to have equivalent expected variances.
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first three eigenvectors of all three matrices and calculated all pairwise vector correlation
coefficients between the eigenvectors of P̄̄ and D and between the eigenvectors of P̄̄ and DIC.

Alignment of D or DIC with P̄̄ may be the result of biological processes, such as genetic
constraint on phenotypic divergence (Lande, 1979; Arnold et al., 2001). However, it also might result
as an artifact of the sampling procedure if traits with high variance have means subject
to large sampling error. To assess the extent to which sampling error has contributed to
correspondence between P̄̄ and D, we conducted a bootstrap randomization procedure in
which population samples were recreated by re-sampling observations from all populations
with replacement. Since sample sizes of the seven populations were extremely uneven, we
performed bootstrap randomization by first picking a random population and then a
random individual from within that population. We used this randomization procedure
because re-sampling generates a set of pseudo-values for population means in which each
individual observation has equivalent probability of having been drawn from any sampled
population. Thus it assumes no real differences among populations, which is the desired null
distribution for D and DIC. We evaluated the significance of the correspondence between P̄̄
and D or DIC by comparing the observed matrix covariance to the distribution of matrix
covariances generated by the randomization procedure. The covariance is preferred as a test
statistic over the correlation coefficient because the correlation might be high between P̄̄ and
D or DIC even if the variances and covariances for traits among populations are negligible,
so long as they are structured similarly to the pattern of variances and covariances within
populations.

With the exception of CPCA, for which CPC (Phillips, 1998) was used, all tests were
implemented using computer programs available from the authors.

RESULTS

P matrix estimation and comparison

Phenotypic variance–covariance matrices from the two focal populations were highly simi-
lar. Standard matrix comparison methods (Mantel test, random skewers, CPCA) showed
little evidence for matrix dissimilarity, although CPCA found that common principal
components (in which all eigenvectors were shared, but eigenvalues were not related by a
common proportionality constant) was the preferred hypothesis over matrix proportion-
ality and equality (Table 1). The same CPCA model was found whether the likelihood
ratio test or the AIC were used for model selection. The T methods yielded similar results,
revealing no significant differences in P between the two populations (Table 1).

With the effect of overall size removed by linear regression, phenotypic correlations in
the pooled phenotypic variance–covariance matrix were highest among long bone limb
elements (Table 2). They were also moderate to high between head dimensions, and between
digital bones and long bones. Although some correlations were very low, for example
between girdle widths and some long bone lengths, none were negative (Table 2).

Phylogeny estimation

The estimated phylogeny of the sampled populations is shown in Fig. 1B. The relationships
among populations are largely concordant with geographic proximity, although the island
population of VIE is more closely related to the south coast population (SAL) and interior
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montane population (MAR), than it is to its closer, east coast neighbours. Nonetheless, the
divergence of VIE is considerable (>15% corrected sequence divergence from its closest
relative). Substantial sequence divergence among even the most closely related populations
(YAB and FAJ; ∼3.3% corrected divergence) makes it likely that the populations under
study have been evolving more or less independently from one another for a substantial
period of time.

Comparison of P and D

Populations differed significantly in body shape (MANOVA: F78,1869.7 = 4.27, Wilks’
λ = 0.404, P < 0.0001). All univariate ANOVAs were also significant with the exception of
jaw width and pectoral girdle width.

The variance–covariance matrix of population means, uncorrected for phylogeny (D),
and the pooled variance–covariance matrix (P̄̄), were significantly correlated (mean random
skewers rs = 0.71, P = 0.0026; Mantel test on standardized matrices rM = 0.59, P = 0.0008).
D and the mean squares and mean cross-products matrix of independent contrasts, DIC,
were quite highly correlated (r = 0.92). As such, when DIC is substituted for D in the analysis
the results are fairly similar. Both the mean vector correlation from random skewers and
the Mantel matrix correlation are smaller than those calculated in the non-phylogenetic
analysis, although in the case of random skewers the difference is very slight (random
skewers rs = 0.70, P = 0.0031; Mantel test rM = 0.34, P = 0.0279).

Table 1. Tests of matrix similarity between phenotypic variance–covariance matrices estimated for
two populations, Puerto Yabucoa (YAB) and Cayo de Tierra, Vieques (VIE), of Anolis cristatellus

Test Null hypothesis Test statistic Significance Reference

Mantel test
on
correlation
matrices

Matrices
uncorrelated

Matrix correlation:
rM = 0.93

P < 0.001 Mantel (1967)

Random
skewers on
covariance
matrices

No shared structure Mean vector
correlation of
response vectors:
rs = 0.93

P < 0.001 Cheverud et al.
(1983),
Cheverud (1996)

Common
principal
components
analysis

Matrices equal
[actual test
implemented: CPC
(null) vs. CPC(11)]

χ
2 = 0.001,

AIC(CPC) =
142.37

P = 0.98 Flury (1988),
Steppan (1997),
Phillips and
Arnold (1999)

T method,
T 2 method

Matrices equal Tobs = 0.019,
T 2

obs = 1.9 × 10−5
PT = 0.18,
PT2 = 0.51

Roff et al. (1999)

Note: All randomization tests used 10,000 randomizations. Random skewers used 10,000 random selection vectors.
In CPCA, the selected model is CPC due to the insignificant likelihood ratio test in the test of CPC vs. CPC(11)
and due to the minimum AIC for that model.
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Eigenstructure comparison showed that the primary eigenvectors of P̄̄ and D are
correlated (vector-correlation r = 0.75), as are the primary eigenvectors of P̄̄ and DIC

(r = 0.82). The second and third eigenvectors of P̄̄ and D are also correlated with each other
(r = 0.44 and r = 0.43, respectively), whereas between P̄̄ and DIC the order of the most
highly aligned eigenvectors reverses between eigenvectors two and three. Here, the third
eigenvector of P̄̄ is most highly correlated with the second eigenvector of DIC (r = 0.59) and
vice versa (r = 0.41).

Although a general correspondence between P̄̄ and DIC is revealed by these analyses
(Fig. 3B), the strength of the pattern varies considerably among pairs of traits (Fig. 3A).
For example, between pelvic width and jaw length, the major axis of among-population
phenotypic divergence is nearly orthogonal to the major axis of the within-population
covariance for the same traits, whereas between ulna length and tibia length, covariances
within and among populations are tightly aligned (Fig. 3A).

In the test for whether correlation of within- and among-population variance–covariance
matrices resulted from sampling error, both between P̄̄ and D and between P̄̄ and DIC

the observed covariance was significantly greater than expected by sampling error in the
estimation of D or DIC alone [cov(P̄̄,D) = 1.21 × 10−5, P = 0.034; cov(P̄̄,DIC) = 1.53 × 10−4,
P = 0.014; Fig. 4].

DISCUSSION

Matrix comparisons

In this study, we found that phenotypic covariance structure was conserved between
distantly related populations of A. cristatellus. Various matrix comparison methods
yielded largely concordant results (see Table 1). A notable exception involved the tests
for matrix equality and proportionality: common principal components analysis suggested
that matrices were neither identical nor proportional (although they shared all principal
components in common), whereas permutation tests [the T methods of Roff et al. (1999)]
could not reject the hypothesis of matrix equality (see Table 1). Certainly, any real
differences between the matrices were slight, as evidenced by their high correlation
(Table 1).

Conservation of covariance structure over substantial evolutionary time scales is quite
intriguing. Theory makes no general prediction about the stability of genetic variances and
covariances (Turelli, 1988; Barton and Turelli, 1989; Shaw et al., 1995). Genetic variances and covariances
are expected to be stable under some circumstances and unstable under others (Turelli, 1988).
As a consequence, stability of covariance structure becomes fundamentally an empirical
question (Turelli, 1988; Camara et al., 2000; Jones et al., 2003).

Simulation studies have shown that genetic covariance structure stability is enhanced by a
consistent pattern of correlated stabilizing natural selection (Jones et al., 2003; L.J. Revell, submitted).
Thus, assuming quadratic selection is important in the production and maintenance of
genetic covariances, stable covariance structure could suggest that the pattern of quadratic
natural selection is fairly constant between evolutionarily divergent and phenotypically
differentiated populations. Alternative explanations for conserved covariance structure
include consistent pleiotropic mutation (Lande, 1980; Jones et al., 2003), strong developmental
constraints (Arnold, 1992), and large effective population size (Jones et al., 2003). In A. cristatellus
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Fig. 3. (A) In a subsample of 4 of 13 traits, the pattern of trait covariation within populations (solid
ellipses) sometimes aligns with the pattern of independent contrast covariation (dashed ellipses), as
between tibia length and jaw length or between tibia length and ulna length. However, the within- and
among-population patterns of covariation are sometimes quite different, as between pelvic girdle
width and jaw length or between femur length and pelvic girdle width. In this figure, the ellipses have a
length and width equivalent to the standard deviation in independent directions of the co-distribution
of trait values and independent contrasts for solid and dashed ellipses respectively. Points are absolute
values of independent contrasts. Ellipses and points are re-centred on the origin. (B) When the entire
13 trait phenotypic variance–covariance (P̄̄) and independent contrast mean squares and mean
cross-products (DIC) matrices are evaluated, their alignment is highly significant (random skewers
mean response vector correlation, rs = 0.70, P = 0.0031; Mantel test on standardized matrices,
rM = 0.34, P = 0.0279).
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Fig. 4. Randomization distribution and test-statistic value in the bootstrap randomization test for
significance of the alignment between (A) P̄̄ and D and (B) P̄̄ and DIC. Bootstrap phenotypic means
data were generated by randomly re-sampling populations and individuals to produce 1000 data sets
containing population means for traits. By comparing the distribution of pseudo-values of the covari-
ance between P̄̄ and D or DIC (covPV) to the observed value of that covariance, this test evaluates the
significance of the correspondence between P̄̄ and D or DIC over that expected on the basis of higher
sampling error for traits with high variance alone. The result [cov(P̄̄, D) = 1.23 × 10−5, P = 0.034; cov(P̄̄,
DIC) = 1.53 × 10−4, P = 0.014] indicates that the correspondence both between P̄̄ and D and between P̄̄
and DIC significantly exceeds that expected due to sampling error in the estimation of D and DIC alone.
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census population densities in excess of 500 animals per hectare have been measured (Genet,

2002), however population structure is high (R.E. Glor et al., in preparation) and genetic effective
population sizes for local populations are unknown.

Due to the small number of P matrices estimated in this study (2), we are uncertain how
general P matrix stability is in this species.

Testing the constraint hypothesis

In this study, we found that the pattern of variation and covariation within populations
resembles the pattern of phenotypic divergence between them. This result was found
whether phenotypic differentiation among populations was measured by calculating the
variance–covariance matrix, D, of population means for traits in the standard way, or if
divergence was measured by calculating the mean squares and mean cross-products matrix
of independent contrasts, DIC. This suggests that genetic constraint has influenced the
pattern of intraspecific differentiation in A. cristatellus.

To our knowledge, this study is the first to compare the MS-MCP matrix of independent
contrasts with P or G as a test for genetic constraint, although Baker and Wilkinson (2003)

performed a similar analysis but used the correlation matrix of independent contrasts. We
find that the result of our comparison of P̄̄ and DIC is relatively less correspondence than
between P̄̄ and D.

In this study, D and DIC are quite highly correlated. Circumstances where D and DIC are
poorly correlated may be rare in nature. One scenario in which D and DIC may be poorly
correlated is when the deepest split in a balanced phylogeny also involved chance differen-
tiation on a minor axis of variance in G. Under these circumstances, G or P may be poorly
correlated with D but well correlated with DIC. In this study, the opposite pattern is seen:
P̄̄ is more strongly correlated with D than with DIC. This pattern highlights another
difficulty with using a non-phylogenetic differentiation matrix, which is that so doing
artificially inflates the number of observations in the study, and thus statistical power, by
utilizing sets of non-independent observations.

Bégin and Roff (2004) describe, but do not apply, a similar test to that used in this study.
However, they find no phylogenetic signal in their data and thus use only the simpler P and
D comparison. We agree that in practice if phylogenetic signal is low, D is very likely highly
correlated with DIC. However, under the assumption of Brownian motion evolution, the
mean squares and cross-products of independent contrasts provide improved measures
of the rate of character evolution and co-evolution than the rates estimated if phylogeny
is ignored (Martins, 1994) and so we tentatively prefer the phylogenetic approach under
circumstances in which a star phylogeny can be rejected as the history of the included taxa.
Nonetheless, the general usefulness of DIC in tests of the constraint hypothesis should be the
subject of further, more detailed study.

In our analyses, we use an ultrametric phylogenetic tree of included populations. An
ultrametric phylogeny is one in which the evolutionary distance is the same from the root of
the phylogeny to any tip. Nothing in the phylogenetic test of the constraint hypothesis
applied in this study requires that only an ultrametric phylogeny be used. Non-ultrametric
phylogenetic trees might be more appropriate when the sample includes an extinct taxon or
if some prior hypothesis about variation in the rate of character evolution exists, for
example correlated rates of molecular and morphological evolution (Omland, 1997). Another
scenario appropriate to the latter case would be an instance in which there existed
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independent information about the effective population sizes of the evolving lineages. In
this situation, branch lengths should be scaled by the inverse of the harmonic mean of the
effective population size for that branch. A cautionary consideration should be that factors
causing bias in molecular phylogenetic branch-length estimates, such as model mis-
specification (Revell et al., 2005), will create error in DIC that would likely be further compounded
by any additional branch-length manipulation.

In the test for constraint employed in this study, two types of error were ignored. Both
the phenotypic variance–covariance matrix and the phylogenetic tree of the included
populations are estimated with error, and excluding consideration of this error from
subsequent analyses artificially inflates our confidence in the conclusions reached by those
analyses. In the former case, ignoring error in the estimation of P̄̄ was justified on the basis
of the fact that the standard errors of the elements of P̄̄ were small (Table 2). As G is usually
estimated with larger error than P (Cheverud, 1988), future studies using G for comparable
analyses might consider estimation error. In the latter case, ignoring error in tree estimation
probably did not substantively influence the results of our analyses, as results were
qualitatively similar even between phylogenetic and non-phylogenetic tests. Nonetheless, we
cannot completely dismiss the possibility that phylogenetic error has biased the results
from our test for constraint. Future studies might consider assessing the importance
of phylogenetic error by randomly sampling pseudo-values of DIC from the posterior
distribution of phylogenies in a Bayesian analysis.

The methods used in this study make at least two important assumptions. The first
assumption pertains to the substitution of P for G in evolutionary analyses. P = G + E,
where E is the environmental variance–covariance matrix. In testing the constraint hypoth-
esis, we looked for a correlation between P̄̄ and D or DIC where P̄̄ is used as a substitute for
the G matrix. The correlation between P and D in terms of G and E is equivalent to:
corr(G + E, D) = [cov(G, D) + cov(E, D)]/�[var(G) + var(E) + 2cov(G, E)] [var(D)]. Since
E only appears once in the numerator, specifically in the term cov(E, D), so long as
the covariance between the environmental variance–covariance matrix and D is zero or
negative, substitution of P for G will tend to decrease the correlation of P and D relative
to the correlation of G and D and thus increase type I, not type II, error in the test for
constraint. Conversely, if E and D are positively correlated, this will normally tend to
increase the correlation of P and D relative to the correlation of G and D and thus increase
type II error. The authors can think of no reason to presuppose that E and D are correlated;
however, we cannot dismiss this possibility with our data.

The second assumption applies to the use of independent contrasts for the calculation
of DIC in the test for constraint. The independent contrasts method assumes correlated
Brownian motion as a model of the evolutionary process (Felsenstein, 1985). This model is
appropriate for random genetic drift in correlated characters (Lande, 1979). Under genetic drift,
the G matrix (for which P is used as a proxy in this study) and D or DIC are expected to
be correlated (Lande, 1979; Hansen and Martins, 1996; Arnold et al., 2001). Since testing for a correlation
between P̄̄ and D or DIC (which we purport was produced by drift) is the primary focus
of this study, we felt that Brownian motion was a suitable assumption. That said, two
additional issues should be kept in mind. In particular, (1) evolution might be by Brownian
motion not only if it occurs by drift, but also if the position of the optimum moves by
Brownian motion. Under this scenario, for P̄̄ and D or DIC to be correlated would require
that the position of the optimum moves according to a Brownian motion process with
a variance–covariance matrix proportional to P̄̄. The data collected in this study can
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neither support nor refute this possibility, however the authors can think of no reason to
presuppose that if the position of the optimum moves by Brownian motion that it would
move according to a Brownian motion process with a variance–covariance matrix
proportional to P̄̄. Furthermore, (2) if evolution does not occur by Brownian motion, an
important assumption of our method is violated. Other models have been developed to
describe the evolutionary process aside from Brownian motion (e.g. Butler and King, 2004). It is
possible that these could be applied to testing the constraint hypothesis, although we feel
that this is beyond the scope of our study.

Other authors have proposed to explain a lack of strong correlation between P or G and
D as indicative of selection overriding constraint (e.g. Ackermann and Cheverud, 2002). Although
we find only moderate, if highly significant, correspondence between P̄̄ and D or DIC, given
the small number of populations (n = 7) used in this study, we are hesitant to ascribe this
pattern, in particular the absence of a high correlation between P̄̄ and DIC, to natural
selection. Rather, we suggest only that the significant correlation between P̄̄ and D
and between P̄̄ and DIC indicates that constraint has played some role in phenotypic
differentiation in this group. This is a shortcoming of our data both due to sample design
and limitations imposed by the number of evolutionarily distinct lineages in our study
species. Future studies might consider sampling more populations from a group with more
evolutionarily distinct lineages.

Finally, an alternative explanation for the correspondence between within- and among-
population variance–covariance matrices is that they are both shaped by the same under-
lying pattern of natural selection (Arnold et al., 2001; Bégin and Roff, 2004). Only one empirical
study to date has compared the G matrix to the matrix of quadratic selection, and in that
case no correspondence was uncovered (Blows et al., 2004). In the absence of such information,
we tentatively prefer as more parsimonious a hypothesis of constraint to explain the
correspondence of P̄̄ with D and DIC; however, this conclusion is subject to modification
when information about natural selection becomes available.

Conclusions

Overall, the results of this study indicate that the evolution of covariance structure
is conservative, at least at the intraspecific level, in a neotropical anole. The significant
alignment of P̄̄ and D or DIC suggests that constraint has played some role in the phenotypic
differentiation of lizard populations in this species. This is the first test for the importance
of genetic constraint in the adaptive radiation of anoles. Our finding of significant evidence
for genetic constraints on phenotypic evolution is the first for a group in which adaptive
explanations for phenotypic divergence are generally proffered (e.g. Losos, 1990a, 1990b; Larson and

Losos, 1996; Glor et al., 2003). Future studies might consider using a similar analytic context to
investigate the role of constraint in the differentiation of Anolis ecomorphs.

Although the non-phylogenetic variance–covariance matrix of population means, D, and
the MS-MCP matrix of phylogenetically independent contrasts, DIC, were highly correlated,
their respective correlations with P̄̄ were substantively different, with D being more tightly
aligned with P̄̄. This indicates the possibility that ignoring phylogenetic history in a study of
constraint can artificially strengthen the constraint hypothesis.
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