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Currently available phylogenetic methods for studying the rate of evolution in a continuously valued character assume that the

rate is constant throughout the tree or that it changes along specific branches according to an a priori hypothesis of rate variation

provided by the user. Herein, we describe a new method for studying evolutionary rate variation in continuously valued characters

given an estimate of the phylogenetic history of the species in our study. According to this method, we propose no specific prior

hypothesis for how the variation in evolutionary rate is structured throughout the history of the species in our study. Instead, we

use a Bayesian Markov Chain Monte Carlo approach to estimate evolutionary rates and the shift point between rates on the tree.

We do this by simultaneously sampling rates and shift points in proportion to their posterior probability, and then collapsing the

posterior sample into an estimate of the parameters of interest. We use simulation to show that the method is quite successful at

identifying the phylogenetic position of a shift in the rate of evolution, and that estimated rates are asymptotically unbiased. We

also provide an empirical example of the method using data for Anolis lizards.

[This article was published online on September 20, 2011. An error in a co-author’s name was subsequently identified. This notice is included in the

online and print versions to indicate that both have been corrected September 21, 2011.]
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Research on adaptive radiation is often focused on determin-

ing whether a particular clade of interest has exhibited excep-

tional evolutionary diversification during its history (Schluter

2000; Freckleton and Harvey 2006; Mahler et al. 2010). For in-

stance, many concepts of adaptive radiation involve a shift in

adaptive zone due to the evolutionary origin of a key innovation

(Simpson 1953). This shift may be accompanied by exceptional

species proliferation, exceptional phenotypic evolution, or both

(Givnish 1997; Schluter 2000; Glor 2010; Losos and Mahler

2010).

5Current address: Department of Biology, University of

Massachusetts Boston, Boston, Massachusetts 02125.

Several methods have already been devised to test if a pre-

specified radiation has been the subject of exceptional net species

diversification (e.g., Slowinski and Guyer 1993; Rabosky 2006;

Stadler 2011), and the BiSSE method by Maddison et al. (2007)

can be used to fit a model in which the rates of speciation and

extinction vary simultaneously with the state of binary character.

In addition, recent methods developed by Alfaro et al. (2009) and

Stadler (2011) can be used to identify clades or time periods with

exceptional net species diversification, even when no such groups

or intervals have been hypothesized a priori.

However, a key feature of adaptive radiations is that they

involve not only species proliferation, but also phenotypic

evolution (Schluter 2000; Losos and Miles 2002; Glor 2010;
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Losos and Mahler 2010; Mahler et al. 2010; Slater et al. 2010).

In particular, by most accounts adaptive radiations are accom-

panied by an exceptional rate or amount of adaptive phenotypic

divergence (Olson and Arroyo-Santos 2009). In this regard, phy-

logenetic methods for the study of adaptive radiation have lagged

somewhat behind. So far, we have methods that can estimate a

single rate of evolution throughout the tree (e.g., Garland 1992;

O’Meara et al. 2006), and methods that can fit two or more rates

of evolution for continuously valued characters, so long as the

branches or subclades in each rate regime are specified a priori by

the user (e.g., McPeek 1995; O’Meara et al. 2006; Thomas et al.

2006; Revell 2008). There are also methods in which we can fit

different adaptive regimes to different a priori assigned branches

in the tree (Butler and King 2004), and we can fit a model in which

evolution is initially rapid and slows through time (Blomberg et al.

2003; Freckleton and Harvey 2006; Mahler et al. 2010). However,

no method has yet been developed in which the branches of the

tree associated with each rate regime, and rates of phenotypic

change themselves, are estimated simultaneously from a phylo-

genetic tree and phenotypic trait data.

In the present article, we describe exactly such a method for

continuously valued characters. We use a Markov Chain Monte

Carlo (MCMC) approach to sample rate shift positions and evo-

lutionary rates from their Bayesian posterior distribution. We

explore the properties of this method via computer simulation,

examining in particular the capacity of our method to locate the

phylogenetic position of a shift in the evolutionary rate and to

estimate the rates themselves. In addition, we test the method

on phylogenies with various numbers of terminal taxa. Finally,

we apply the method to an example dataset for Caribbean Anolis

lizards.

The primary innovation of our method is that it can be used

to identify rate variation naively—that is, without a specific and

fixed prior hypothesis for how heterogeneity in the rate of evolu-

tion is structured among taxa or has evolved on the tree. This is a

substantial advance because in theory it should allow us to iden-

tify clades with exceptional adaptive phenotypic diversification

(i.e., adaptive radiations, by some definition) that are unknown a

priori. We also believe that this is among the first articles to use

a Bayesian MCMC approach to fit a model for the evolution of a

continuously valued character to the data and a phylogenetic tree

(but see Bokma 2008 for an earlier application to the problem of

punctuational and gradual evolution of a continuous trait).

Here, we use a relatively simple model of rate variation: one

in which the evolutionary rate has changed (from low to high or

vice versa) once and only once in the history of the study group.

We hope that this method will motivate further research in this

area. For instance, we envision using the general approach applied

in this paper to test more complex hypotheses involving multiple

rate shifts, more than two rates, different models of evolution, or

multiple continuous traits.

Methods and Results
MATHEMATICAL AND COMPUTATIONAL DETAILS

We programmed all analyses presented herein in the flexible sci-

entific computing language, R (R Development Core Team 2010).

The code we used for the analyses of this paper is available as

an Appendix S1 and updated versions will be distributed as part

of the R phylogenetics package “phytools” (Revell 2011). The

simulation, MCMC, and MCMC diagnostics code, all provided

in Appendix S1, call functions from the phylogenetic packages

“ape” and “geiger” (Paradis et al. 2004; Harmon et al. 2008),

and from the MCMC diagnostics package “coda” (Plummer et al.

2010).

The model presented herein is for the evolution of a single,

continuously valued character on a rooted phylogenetic tree with

branch lengths in units proportional to time. Under this model,

evolution proceeds by a Brownian motion process on the tree

(Cavalli-Sforza and Edwards 1967; Felsenstein 1985). The in-

stantaneous variance of the evolutionary process in this model

(the evolutionary rate) changes from low to high, or high to low,

once and only once in the tree. Accordingly, the model has four

parameters: the two evolutionary rates (σ2
1 and σ2

2) that prevail

on either side of the rate shift; θ, a 2 × 1 vector containing the

branch identity and the position along the branch at which the

evolutionary rate transitions from σ2
1 to σ2

2 (or vice versa); and

finally, the ancestral trait value at the root node of the tree (α).

The data consist of values for a continuously distributed character

for all tip species, and a bifurcating or multifurcating rooted phy-

logeny with branch lengths. We focus on estimating σ2
1, σ2

2, and θ

from the tree and character data.

To be able to sample from the posterior probability distri-

bution, we need to start with an expression for the likelihood of

our model and parameters given the data and tree. The expression

we used is based on the multivariate normal equation and has

been applied previously to related problems (Felsenstein 1973;

O’Meara et al. 2006):

L
(
σ2

1, σ
2
2, α, θ

) = exp
[− 1

2 (x − α1) ′ (σ2
1C1 + σ2

2C2
)

(x − α1)
]

(2π)n/2
∣∣σ2

1C1 + σ2
2C2

∣∣1/2
,

where x is an n × 1 vector containing our trait data for each of

n species; 1 is a conformable vector of 1.0s; and Ci is an n × n

covariance matrix containing all the branch lengths in the ith

group on the tree (e.g., Revell 2008). The break point between

C1 and C2 is determined by θ, as illustrated in Figure 1. The

manner in which we have computed the Ci s in Figure 1 assumes

that evolution proceeds by random diffusion (Brownian motion)
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Figure 1. (A) Stochastic five taxon tree. Branch lengths (v) are

shown above each edge, denoted by the node that they precede.

The number below each edge is the fraction of total branch length

in the tree represented by the overlying edge. (B) Calculation of

C1 and C2 for branches painted with blue or red, respectively. Note

the hypothesized shift from blue to red occurs fraction k along the

branch leading to descendant species B, C, and D, and is indicated

by θ.

with instantaneous rates σ2
1 or σ2

2; however, we will not focus on

this assumption because other evolutionary models are certainly

possible within this general framework.

We designed our MCMC run as follows. We first initialized

the chain with starting values for the parameters in the model.

These parameter values can optionally be supplied by the user;

but to improve computational performance, by default our im-

plementation is programmed to choose reasonable starting values

for the parameters (described below). For each generation of the

chain, we proceeded to cyclically update each parameter in the

model (i.e., to say, updating all four parameters took four gener-

ations) with a random step from a proposal distribution for that

parameter. We used Gaussian proposal distributions, centered on

zero, for changes to the rates (σ2
1 and σ2

2) and the ancestral value

(α), and we used a symmetric exponential distribution (i.e., an ex-

ponential distribution whose density has been halved and reflected

across the ordinate) for changes to the shift point (θ). Negative

values, in this case, meant a change toward the root of the tree.

We also tried a Gaussian proposal distribution for θ, although this

made little difference on the test datasets that we analyzed. We

have left the symmetric exponential as the default because we be-

lieve that it will allow for a more thorough exploration of the tree

by the MCMC chain. In our implementation of this MCMC algo-

rithm, the variances of each proposal distribution can be specified

by the user.

Changes to θ that are larger than the remaining length of the

current edge (i.e., branch) also require one or multiple decisions,

according to the following algorithm: (1) if going rootward down

the tree, and not at the root, we proceeded to the parent edge or

the other daughters (allowing for multifurcation) all with equal

probability; (2) if going tipward up the tree and not at a tip, we

proceeded to either daughter edge with equal probability; (3) if

at the root, we proceeded to any other daughter edge with equal

probability; and, finally, (4) if at a tip, we reflected the change back

along the tip edge exactly the distance it would have otherwise

exceeded the terminal node.

If allowed to proceed as an unhindered random walk on

the tree, this algorithm will eventually sample all edges on the

tree with a probability directly proportional to their lengths (not

shown). To ensure proper mixing, we also allowed a small fraction

of steps (say, 5%, but this can also be modified by the user) to

result in a move to a randomly selected branch with probability

proportional to its length. Half of the time that such a move was

performed we also switched the values of σ2
1 and σ2

2.

Our proposal distributions for σ2
1, σ2

2, and α are symmetric.

Proof of symmetry of the proposal distribution for θ is given

in Appendix S2. Symmetry of the proposal distributions is an

important property because it allows us to set the Hastings ratio

to 1.0 (Hastings 1970; Yang 2006; see below).

Given a new proposed value for a parameter, σ2
1′, we accepted

this change under two conditions: (1) if it increased the posterior

probability; or (2) if it decreased the posterior probability but

satisfied the following inequality:

L
(
σ2

1′, σ2
2, α, θ

)
Pr

(
σ2

1′, σ2
2, α, θ

)

L
(
σ2

1, σ
2
2, α, θ

)
Pr

(
σ2

1, σ
2
2, α, θ

) > r ∼ U (0, 1),

where r ∼ U (0, 1) is a random variate drawn from a uniform

distribution on the interval (0,1), and Pr(σ2
1, σ

2
2, α, θ) is the prior
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probability of our parameter values. The chance of accepting a

change that decreases the posterior probability of the model is thus

exactly equal to the ratio of posterior probabilities of the current

and updated models. This is the standard form of the Metropolis–

Hastings MCMC algorithm (Metropolis et al. 1953; Yang 2006)

with the Hastings ratio set to 1.0.

In the present study, we used a log-normal prior probability

distribution centered on 0.0 for the ratio σ2
1/σ

2
2, and a uniform

prior on the log-scale for the geometric mean of σ2
1 and σ2

2. We

also used an unbounded uniform prior for α, and a uniform prior

for θ. For θ, this means that the prior probability of the shift point

being on any edge of the tree is exactly proportional to the length

of that edge. We explored various distributions for the prior on σ2
1

and σ2
2 and our analyses did not seem to be especially sensitive to

the prior, except for under one specific set of conditions that we

will discuss at greater length below (see Discussion).

In our implementation of this method, the user can supply

randomly or nonrandomly chosen starting parameter values for

σ2
1, σ2

2, and α to initialize the MCMC run. However, by default, we

used a previously derived analytic solution for the maximum like-

lihood estimate (MLE) of the evolutionary rate under a single rate

regime (i.e., σ2
1 = σ2

2 = MLE(σ2); for example, O’Meara et al.

2006) and we used the MLE of the root node ancestral value un-

der a single rate for α (Rohlf 2001; O’Meara et al. 2006). This

was done mainly to improve computational performance and de-

crease burn-in by starting with values for σ2
1, σ2

2, and α that we

might expect to be roughly of the correct magnitude. To initialize

θ, we randomly selected a location for the shift point between

rate regimes on the tree. The probability of choosing a shift point

along any branch on the tree was set to be proportional to the

branch length; meaning, for instance, that one would be exactly

twice as likely to start with a random shift point on a branch with

length 2v than on one with length v. This is essentially equiva-

lent to choosing a random value of θ from our prior probability

distribution for θ.

Each posterior sample for this analysis consists of values

for σ2
1, σ2

2, α, and θ; a value for the log-likelihood; and a list of

the tip labels for the set of tips in state σ2
2. Because σ2

1 and σ2
2

depend both on θ and the set of tips in state σ2
2 (i.e., whether σ2

1

or σ2
2 is the derived rate), we propose the following algorithm for

preprocessing the posterior sample from our MCMC run. First,

we found the median shift point in the posterior sample. This

was done by identifying the sampled point with the minimum

summed distance to all the other points in the sample (although

other options for this are certainly possible, see Discussion). Next,

we went through each sample in the posterior, splitting the tree

at the shift point for that particular sample, and then assigning

the derived and ancestral rates to edges or fractions of edges in

the ancestral and derived subtrees, respectively (this might be σ2
1

and σ2
2, or σ2

2 and σ2
1, depending on the membership to our list

of labels for that sample). Finally, we reattached the two subtrees

and computed the average rates rootward and tipward from the

median shift point. Note that the collection of edges and fractions

of edges rootward or tipward of the median shift point can include

one or both rate categories depending on how the estimated shift

point for that sample differs from the median shift point. For

consistency across samples, we now assigned σ2
2 always as the

derived rate and σ2
1 as the ancestral rate.

SIMULATED EXAMPLE

We generated and analyzed a simulated phylogenetic tree and

phenotypic dataset to illustrate the application and results of

our method. This simulation also forms the basis for our per-

formance analysis of the method, below (see section Performance

analysis).

We first simulated a stochastic pure-birth phylogeny with

100 terminal species. We then randomly selected a position on the

tree as the location of the rate shift for our quantitative character.

This evolutionary scenario is illustrated by the colored branches

of the phylogenetic tree of Figure 2. The rate shift is located in a

random position on the labeled branch “147,” where branches are

identified by the number of the descendant node, and nodes are

numbered according to the conventions of “phylo” objects in the

“ape” phylogenetics package for R (Paradis et al. 2004; Paradis

2006). We next evolved a continuous character on the phylogeny

under Brownian motion with the starting value α = 0.0 at the root

of the tree. The simulated evolutionary process had instantaneous

rates σ2
1 = 1.0 on edges rootward of the shift point (blue branches

in Fig. 2), and σ2
2 = 10.0 on edges tipward of this point (red

branches).

For the MCMC run, we set the following control param-

eters. We set the standard deviations of the Gaussian proposal

distributions for σ2
1and α to 0.5, and the standard deviation of

the proposal distribution for σ2
2 to 1.0. We set the rate parameter

(λ) for the exponential proposal distribution for shift point moves

to λ = 5.0. Because random deviates from the exponential pro-

posal distribution for tree moves were also assigned random sign

with equal probability, the realized proposal distribution for tree

moves has the following density: f (x) = λ
2 e−λ·x for x ≥ 0 and

f (x) = λ
2 eλ·x otherwise. We also set the probability of proposing

a move to a random point in the tree to 0.05. We set the variance

of the log-normal prior for the rate ratio σ2
1/σ

2
2 to 2.0; finally, we

used a uniform prior for α and θ.

We ran the Metropolis–Hastings MCMC algorithm for

100,000 generations, sampling every 10 generations. Figure 3A

shows the trace of the log-likelihood sampled every 100 gen-

erations (i.e., every 10 samples) from the entire MCMC run.

In this example, we can see that the chain converges rapidly.

We then preprocessed the posterior sample, as discussed above.

Figures 3B and 3C show the frequency histograms of the posterior
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147

(0.960)
(0.040)

Figure 2. Stochastic, 100 taxon tree used for the simulated example. Phenotypic data were generated on this tree with a 10-fold higher

evolutionary rate along the branches painted in red. The node tipward of the rate shift (numbered “147,” by the “phylo” convention in

“ape”) is also indicated. Numbers presented in parentheses below or adjacent to branches are the posterior probabilities that the rate

shift occurred on each labeled edge from the illustrative example. Only posterior probabilities ≥ 0.001 are reported.

samples obtained after preprocessing the posterior samples for σ2
1

and σ2
2, with the first 10,000 generations excluded as burn-in. We

computed effective sample sizes (ESSs) and 95% credible inter-

vals (CIs) for the mean of the posterior distribution for σ2
1, σ2

2, and

α (Table 1). This can be done quite easily using the R package

“coda” (Plummer et al. 2010) or, alternatively, in the Java program

“Tracer” (Rambaut and Drummond 2009) that has the benefit of

a very user friendly graphical interface. We recommend ESSs for

the evolutionary rates of at least 100. If an ESS less than 100 is

obtained, then the MCMC can be rerun and the post burn-in sam-

ples combined (e.g., Ho et al. 2007). We computed the estimated

values of σ2
1, σ2

2, and α as the mean of the preprocessed poste-

rior sample (excluding the burn-in). All were very close to the

generating conditions here (Table 1). The choice of the posterior

arithmetic mean as an estimator is arbitrary. We might instead

compute the posterior median or geometric mean (although in

this example, the arithmetic means of the posterior sample are

quite close to the generating parameter values). The ESSs for σ2
1

and α were quite high, indicating relatively low autocorrelation

in the posterior samples for these parameters; however, the ESS

was considerably lower for σ2
2, suggesting that we might do bet-

ter by adjusting the variance of the proposal distribution for this

parameter.

We also computed an approximate median rate shift point by

computing all pairwise distances between shift points in the post

burn-in posterior sample, and then selecting the shift point with the

minimum summed distance to all the other points in the sample,

as described above. This value, which corresponds very closely

to the generating shift point in this example, is also reported in

Table 1. This procedure will not be computationally feasible for

very long MCMC runs; however, in that case one could instead

use a sparser sample of shift points from the posterior (taken, say,

every 100 or 1000 generations, instead of every 10 generations as

in this example). Finally, we computed the posterior probability

of the shift point being on each edge of the tree. For all edges with

posterior probability ≥ 0.001, we have plotted these probabilities

below or adjacent to the corresponding branches in Figure 2.

Nearly, all (96%) of the posterior density for the location of the

rate shift is on the generating edge in this case (Fig. 2).

PERFORMANCE ANALYSIS

To assess the performance of the method more generally, we

conducted two sets of simulation tests of the method. First, we

conducted the following simulation 80 times in total (20 times

for each of the four sets of generating rates, described below):

(1) We simulated a stochastic, pure-birth, N = 100 species phy-

logenetic tree with branch lengths. (2) We picked a shift point

at random on the tree. Although in theory our method should be

appropriate to detect evolutionary rate shifts in subclades of any

size, we anticipate that the method will suffer from low power

when the number of species rootward versus tipward of the rate

shift is extremely unbalanced. Thus, to avoid this issue in our

early performance analysis of the method, we decided to exclude

randomly chosen shift points with fewer than 20 or more than
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Figure 3. Results from the simulated example. (A) Trace of log(L)

by generation number for the 100,000 generation MCMC analy-

sis. The log(L) was sampled every 100 generations. (B) Frequency

histogram of the post burn-in posterior sample for σ2
1 . The gen-

erating value of σ2
1 = 1.0 is indicated by the vertical dashed line.

The mean from the posterior sample is given by the vertical solid

line, whereas the 95% credible interval (CI) is given by the shaded

area. (C) Same as (B), but for σ2
2 . The generating condition, in this

case, was σ2
2 = 10.0.

80 descendant species (in other words, we excluded splits for

simulation in which more than 80% of the taxa in the phylogeny

were on one side of the split). (3) We then simulated data on the

tree with generating conditions as follows: the branches ancestral

to the shift point evolved with rate σ2
1 = 1.0, whereas the derived

branches evolved with rates σ2
2 = 0.1, 1.0, 5.0, or 10.0 (20 simula-

tions each). (4) We initiated the MCMC chain as in the illustrative

example, above, and ran the chain for 100,000 generations. Nor-

mally users would probably run multiple MCMC chains, adjusting

the control parameters to ensure proper mixing and convergence.

Here, we merely adjusted the control parameters (mainly the vari-

ances of the proposal distributions or the number of generations

in the chain) and reran any MCMC for which the ESSs for σ2
1

or σ2
2 was less than 100. We did this until we obtained ESSs

greater than 100 for all runs. (5) We computed summary statistics

on the posterior sample, excluding the first 20,000 generations

of the sample. In addition to the summary measures reported in

Table 1, we also computed the patristic distance between the

inferred shift point (θ̂) and the generating value of θ for each

replicate (i.e., the minimum edge distance connecting the two

points in the tree).

A summary of the results from these analyses is given in

Table 2. Results for all of the 80 simulations are in Appendix S3.

For each set of simulation conditions, Table 2 gives the arithmetic

means of σ2
1, σ2

2, and α (the geometric means and medians for σ2
1

and σ2
2 are reported in Appendix S3), the proportion of simula-

tions in which the correct node was inferred, and the fraction of

simulations in which the 95% CIs for σ2
1 did not overlap σ̂2

2 (our

estimate of σ2
2) and vice versa. This latter frequency is analogous

to the statistical “power” of the method (or its type I error, for

the generating conditions σ2
1 = σ2

2 = 1.0; alternatively, 1.0 minus

this fraction is the type II error rate of the method if σ2
1 �= σ2

2).

This procedure is somewhat ad hoc as the model itself explicitly

assumes that σ2
1 �= σ2

2; however, the results of Table 2 and Ap-

pendix S1 suggest that we will only be infrequently mislead to

believe that σ2
1 �= σ2

2 if they are in fact equal. We also report the

mean distance between θ̂ and θ for each simulation condition. In

general, parameter estimates are pretty good, and 95% CIs nearly

always included the generating parameter value. The method also

has excellent success in identifying the position of the rate shift

to a specific edge in the tree, particularly when the proportional

difference between σ2
1 and σ2

2 was high (Table 2).

Second, we also explored the performance of the method on

smaller and larger phylogenies than the stochastic N = 100 trees

described above. To do this, we used the following procedure:

(1) We simulated 20 pure-birth phylogenies with each of the

following sizes N = 30, 50, 70, and 200. (2) On each tree, we

chose a random rate shift location such that no less than 20%

and no more than 80% of the species in the tree were found

tipward from that point. (3) We then simulated the evolution of a

continuously valued character with σ2
1 = 1.0 and σ2

2 = 10.0 as the

ancestral and derived rates, respectively. (4) We ran our MCMC

chain on each simulated dataset and tree, using the conditions

described previously, and then computed summary measures from

the posterior sample. Again, we reran MCMCs for which ESSs

of either σ2
1 or σ2

2 was less than 100.

The results from these analyses are summarized in Table 3

and specific results from all analyses are given in Appendix S3.
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Table 1. Results from analysis of the simulated example. The generating and inferred shift point (θ) is indicated by the tipward node

(“147” in this case) and (absolute, not relative) position of the rate shift along the edge.

Generating Estimate Effective 95%
Parameter value (mean from posterior sample) sample size credible interval

σ2
1 1.0 1.074 2172 (0.7373,1.4440)

σ2
2 10.0 11.43 247.0 (5.0812,19.8603)

α 0.0 0.042 3520 (−0.7087,0.7484)
θ [147,0.0084] [147,0.0536] – –

In general, we found that the method had remarkable success in

identifying the location of the rate shift in the tree. Evolutionary

rates were biased on small trees (in particular, such that σ̂2
1 and

σ̂2
2 were more similar) but this bias nearly vanishes for the larger

simulated phylogenies in the study.

EMPIRICAL TEST

Finally, we also examined the performance of the method using

an empirical dataset and tree. We analyzed the evolution of body

size (measured as log-SVL: “snout-to-vent length”) in a 32 species

subtree extracted from the 100 taxon Anolis phylogeny of Mahler

et al. (2010). We chose to analyze this subtree rather than the

whole Caribbean Anolis phylogeny because the results of prior

studies (e.g., Butler and King 2004) suggest that more than two

different evolutionary processes might govern the evolution of this

lizard group in the Caribbean. We focused on the subtree given

in Figure 4, which contains the Anolis sagrei group on Cuba; the

A. distichus group on Hipaniola; A. cristatellus and related Puerto

Rican lizards; and, finally, the endemic radiation of six Anolis

species on Jamaica.

We optimized the MCMC as follows. We used Gaussian

proposal distributions for σ2
1, σ2

2, and α, with variances 0.015,

0.050, and 0.90. We used a prior on the ratio of the log-transformed

rates with variance of 4.0. A summary of the results from this

analysis is given in Figure 4. We found that the vast majority of

the posterior density for a rate shift in our model was found either

at the base of or within the Jamaican radiation. The estimated rate

tipward of the shift was about 8.5 times higher than the estimated

rate rootward of the shift. Note that Jamaica is the only island

in this phylogeny that is hypothesized to have been colonized de

novo in this subtree (see Mahler et al. 2010). Consequently, this

result is consistent with our impression based on prior studies that

Table 2. Summary of results from the performance analysis. σ̄2
1 and σ̄2

2 are the mean parameter estimates across simulations. “ESS”

denotes the mean effective sample size across simulations. “On CI” indicates the fraction of times that the generating value was on the

95% credible interval for σ2
1 or σ2

2 . “No CI overlap” means the proportion of simulations where the 95% CI for σ2
1 does not include σ̂2

2

and vice versa. “Correct edge” indicates the fraction of times in which the correct edge in the tree was identified by this method. Finally,

“distance” indicates the mean distance from the true shift point to its inferred value. For this calculation, the total tree was rescaled to

unit length. Values in parentheses are standard deviations across simulations. Obviously, “correct edge” and “distance” are meaningless

when no rate heterogeneity is simulated; however, we nonetheless include these measures (marked with an asterisk) because they serve

to demonstrate that the MCMC algorithm does not converge to a randomly selected branch in the absence of a simulated rate shift on

that branch.

Simulation 1: Simulation 2: Simulation 3: Simulation 4:
σ2

1=1.0, σ2
1=1.0, σ2

1=1.0, σ2
1=1.0,

σ2
2=0.1 σ2

2=1.0 σ2
2=5.0 σ2

2=10.0

σ̄1(mean)2 (SD) 1.05 (0.175) 1.06 (0.172) 1.241 (0.389) 1.16 (0.158)
σ̄2(mean)2 (SD) 0.129 (0.0618) 1.08 (0.173) 4.326 (1.463) 10.66 (3.522)
ᾱ (SD) −0.137 (0.132) 0.013 (0.409) 0.0400 (0.0331) −0.083 (0.057)
ESS(σ2

1) 679.6 691.0 324.0 746.4
ESS(σ2

2) 618.1 633.8 368.8 419.4
ESS(α) 773.8 780.2 806.5 780.8
On CI(σ2

1) 1.00 0.95 0.80 1.0
On CI(σ2

2) 0.85 0.95 0.80 0.9
No CI overlap 1.00 0.00 0.75 1.0
Correct edge 0.95 0.15∗ 0.70 0.85
Distance (SD) 0.0531 (0.0473) 0.195∗ (0.146) 0.0821 (0.0533) 0.0533 (0.0587)

EVOLUTION JANUARY 2012 1 4 1



LIAM J. REVELL ET AL.

Table 3. Summary of the results from the test of power. σ̄2
1 , σ̄2

2 , “ESS,” “on CI,” “no CI overlap,” “correct edge,” and “distance” are

defined as in Table 2. Values in parentheses are standard deviations across simulations.

N=30 N=50 N=70 N=200

σ̄1(mean)2 (SD) 1.93 (0.909) 1.33 (0.414) 1.17 (0.353) 1.066 (0.146)
σ̄2(mean)2 (SD) 8.80 (5.20) 10.17 (5.09) 10.02 (3.20) 9.54 (1.34)
ᾱ (SD) 0.0955 (0.401) −0.156 (0.404) −0.029 (0.466) 0.020 (0.493)
ESS(σ2

1) 483.6 526.7 683.8 763.0
ESS(σ2

2) 393.1 277.4 314.6 558.2
ESS(α) 815.0 858.1 859.1 828.3
On CI(σ2

1) 0.90 1.00 0.95 0.95
On CI(σ2

2) 0.85 0.85 0.90 1.00
No CI overlap 0.55 0.85 0.95 1.00
Correct edge 0.80 0.85 0.95 0.90
Distance (SD) 0.173 (0.232) 0.133 (0.144) 0.062 (0.060) 0.057 (0.048)

the evolutionary rate is higher on newly colonized islands when

ecological opportunity is high (Mahler et al. 2010).

Discussion
Herein, we develop a Bayesian MCMC approach for the analysis

of rate variation in continuously valued characters in the con-

text of a phylogenetic tree. This method is an innovation over

previous related maximum likelihood techniques (e.g., O’Meara

et al. 2006; Thomas et al. 2006) because it allows us to remain

naive about how evolutionary rate variation is distributed among

the branches of the phylogeny, and specifically, when in time a

change in the evolutionary rate has occurred. However, the model

we present herein is quite simple: one and only one rate shift is al-

lowed on the phylogeny (in contrast to O’Meara et al. 2006 where

multiple shifts are permitted, although they need to be specified

a priori).

The method works quite well in general as we were able to

estimate the branch of the shift in evolutionary rate for a con-

tinuous character with quite high accuracy. Unsurprisingly, we

were able to estimate the correct edge with higher success under

conditions where the evolutionary rate shift was proportionally

largest (Table 2). Notably, though, for a rate shift of a given size

the probability of inferring the correct branch did not increase for

larger trees (Table 3). Although the mean patristic distance from

the inferred shift point to its generating location did in fact decline

for larger tree sizes, one should keep in mind that as we scaled

all trees to have a common length of 1.0, merely identifying the

correct edge in the tree virtually guarantees that one will have

identified a phylogenetic position closer to the generating shift

point.

Unfortunately, although we were usually able to narrow down

the position of the rate shift to the correct edge, the method had

much less success in locating the shift to a specific point along that

edge. For instance, Figure 5 shows our estimate of the posterior

density for the shift position conditioned on the edge being the

correct edge from the illustrative example. The posterior density

is essentially flat on the interval (although it inclines somewhat

towards the tipward side of the edge—opposite to the generating

shift point in this case). We are not sure why our data for tip

species can contain so much information regarding the edge on

which the evolutionary rate changes, but so little about where on

that edge it changes; however, we plan to explore this issue in

greater depth with future studies.

Our parameter estimates for the evolutionary rates appear

to be asymptotically unbiased for large sample sizes and large

evolutionary rate shifts. That is to say, for large trees and a sin-

gle large rate shift, the arithmetic mean of the posterior sample

of evolutionary rates rootward and tipward of this shift will be

unbiased estimates of the generating rates. However, for other

circumstances, the evolutionary rates estimated in this way range

from being slightly to substantially biased. We suspect that the

bias in these situations comes from two sources.

First, the bias tends to cause the estimated rates, σ̂2
1 and σ̂2

2,

to be more similar than their underlying generating values. We

see this in all of the simulations with fewer than 100 species,

as well as for our simulations with σ2
2 = 5.0 (Table 2, 3). We

believe that this is just an inherent quality of integrating over

uncertainty in the location of the evolutionary rate. Consider,

for instance, the evolutionary scenario illustrated in Figure 2.

In this case, if the rate shift for a given sample is located one

edge tipward of the true shift point (and thus the ancestral rate

contains some red branches), then the posterior probability will

be highest, and thus the sample more likely to be retained, if the

ancestral rate σ2
1 is relatively high; however, σ2

2, the derived rate,

contains only red branches and will be unaffected. Conversely, if

the shift point for a different sample is located one edge rootward

of the true shift point (and thus the derived rate contains some
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Figure 4. Phylogeny of a subtree from the radiation of Caribbean

Anolis. Rates and posterior densities are from an analysis of body

size evolution on this tree. Posterior probabilities of the rate shift

being on each edge of the tree (if > 0.01) are represented by the

filled fraction of each pie graph. Most of the posterior density

for a rate shift suggests an increase in the evolutionary rate at

the base of or within the Jamaican diversification of Anolis. This

finding is consistent with prior studies showing that the rate of

evolution is increased on newly colonized islands, as Jamaica is

the only island that was colonized de novo in this subtree (all

other inferred colonizations are secondary or back-colonizations;

see Mahler et al. 2010). The total tree length is scaled to 1.0 in this

example.

blue branches), then the posterior probability will be highest if

the derived rate σ2
2 is relatively low; however, the ancestral rate

contains only blue branches and will be unaffected. Given that

both of these conditions will cause the sampled rates σ2
1 and σ2

2 to

be more similar, this effect could account for the pattern we see

in Tables 2 and 3. To avoid this, we might be tempted to average

the posterior sample of rates but condition on the inferred edge;

however, we advise against this because for all empirical studies

the generating rate shift location is unknown and conditioning on

the edge effectively ignores uncertainty in the evolutionary rates

that is due to uncertainty about where the rates have changed

over time. Very large rate shifts and large tree sizes effectively

concentrate the posterior density for the rate shift on one or a very

small number of edges (e.g., Fig. 2), thus mitigating this issue.

We also perceived that the evolutionary rates were some-

times upwardly biased even for very large rate shifts and rela-

tively species rich trees. We are unsure of the source of this bias,
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Figure 5. Posterior density for the phylogenetic position of the

change in evolutionary rate, conditioned on the edge and stan-

dardized to a total branch length of 1.0. The vertical dashed bar

indicates the relative position of the generating rate shift along

that branch. Essentially, the posterior density is uniform on the

edge length.

but note that it appears to decline (if not disappear) for larger

trees (e.g., Tables 2 and 3). In this case, we suspect that the bias

might be due to averaging the posterior sample of rates with the

arithmetic rather than the geometric mean. The arithmetic mean

“penalizes” sampled evolutionary rates that are half or double the

generating value unequally—putting more weight on the doubled

value in this case. Because these samples are equally bad, by

some measure, computing the geometric mean (in which halved

and doubled samples are penalized equally) might be a more ap-

propriate summary of the posterior sample. Indeed, computing

the geometric means of the posterior sample of rates does reduce

the bias in parameter estimation (Appendix S3).

In the present study, we have focused on the simplest evolu-

tionary model for a continuously valued trait: Brownian motion.

However, the general approach developed herein should be use-

ful in analyzing other more complex evolutionary scenarios. For

instance, it might also be helpful in analyzing variability in the

selection regime over time (e.g., Hansen 1997; Butler and King

2004). In that case, our model for evolutionary heterogeneity

would be an Ornstein–Uhlenbeck process with an optimum that

shifts at some point in the tree (Butler and King 2004). Our model

parameters would then be the phenotypic locations of the adaptive

optima, as well as the shift point between evolutionary regimes

(as in this study).

We analyzed only a single character in the present article. It

is conceivable to extend the general approach to multiple coevolv-

ing traits. For instance, Revell and Collar (2009) fit a model in
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which the evolutionary correlation between two aspects of buccal

morphology changes on certain branches of the phylogenetic tree

of centrarchid fishes. Using the approach developed in this paper,

we could instead ask if the evolutionary correlation between traits

changes in the history of our group, and if so, when and in which

ancestral lineage.

In addition to modeling only one trait, we also analyzed only

a single shift point between rates. In the future, we might use

the same general approach represented herein to model multiple

shifting points between two or more than two evolutionary rates

or processes. This makes biological sense to explore, because our

method does not presently allow for homoplasy in the derived

evolutionary rate (i.e., Fig. 2). In the real world, we certainly

expect that the evolutionary rate would change multiple times or

exhibit reversal in some derived lineages.

Nonetheless, we feel that this new approach takes an impor-

tant step forward in many regards. In particular, it enables us to

ask if a subclade of our tree has diversified exceptionally in their

phenotypes, even if we had no a priori reason to have identified

that group as unusual. This method also effectively circumvents

the circularity associated with asking if a clade of interest (spe-

cial, perhaps, in its perceived diversity) has diversified especially.

Use of this method should also avoid the so-called “trickle-down

effect” of Moore et al. (2004). According to this effect, a shift in

the species diversification rate (or, in this case, the rate of evolu-

tion for a continuous character) that occurs in a nested position

within a clade can create the illusory impression that the entire

clade has diversified exceptionally, that is, if this was our a pri-

ori hypothesis for phenotypic divergence. Our method does not

require a specific prior phylogenetic hypothesis for variation in

the evolutionary rate through time and thus should not be subject

to this problem. This method will thus be particularly useful for

identifying the exceptional diversification of adaptive radiation

by being able to distinguish a shift in the evolutionary rate at the

root of our putative adaptive radiation from a shift located in a

more nested phylogenetic position.

Exceptional diversification need not only come in the form

of exceptionally large diversity. For instance, we might also ask

if there is evidence of derived constraint (e.g., Revell and Collar

2009; Lavoué et al. 2011). Indeed, the method presented herein

is equally well suited to identify an exceptionally low rate as it

is an exceptionally high rate of evolution, and in fact, we have

explored that in some of our simulations (Table 2).

Although we present only one form for the prior distribution

for σ2
1 and σ2

2 here, we explored several different priors when de-

veloping this method. For instance, we put an exponential prior

on σ2
1 and σ2

2 separately, with various values for λ. What we dis-

covered is that the method is not sensitive to the prior so long

as |log(σ2
2/σ

2
1)| is large (in other words, when rates are very dif-

ferent). However, the method becomes extremely sensitive to the

prior as |log(σ2
2/σ

2
1)| approaches zero (i.e., when there is no phe-

notypic evolutionary rate variation in the tree). In particular, for

an exponential prior under these conditions, the posterior dis-

tribution becomes an approximately even mixture of reasonable

values for the single global rate, and the prior distribution. We

found that putting a prior on the log-ratio of σ2
1 and σ2

2 had rea-

sonably good behavior under all conditions, including when no

real rate variation was simulated.

In the present article, we “averaged” the shift points by sim-

ply identifying the posterior sample with the minimum summed

distance to all the sampled shift points in the set of all posterior

samples. This is only one possible algorithm to find the median

of these points. Alternatively, we might identify the point on the

tree that minimizes the summed or squared summed distances

to the other shift points, or we might first identify all posterior

samples on the modal branch and then average only that subset.

All of these options will produce different values for the median

shift point in the posterior distribution. Because the median shift

point is used to preprocess the posterior sample before analysis

(see Methods), different methods for calculating it will also result

in a different posterior sample of rates.

Adaptive radiations, the rapid divergence and phenotypic

diversification of a clade, are thought to be of central importance

in the origin of new species and morphologies (Simpson 1953;

Givnish and Systma 1997; Schluter 2000; Glor 2010; Losos and

Mahler 2010). Phylogenetic tools have been developed that can

naively identify exceptional species diversification (Alfaro et al.

2009; Stadler 2011), but no comparable method has yet been

presented for phenotypic divergence. Herein, we propose such a

method that is based on Bayesian MCMC. Although we focus on

identifying exceptional diversification under a Brownian process,

we anticipate that the general approach developed herein will

be equally useful for other evolutionary models as well, such

as adaptive evolution toward different fitness optima in different

parts of the phylogeny (e.g., Butler and King 2004).
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