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In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most

methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and

the associated phenotypic data. Here, we develop and implement a new, tree-based method called MECCA (Modeling Evolution

of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte

Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait

data. We demonstrate via simulation that MECCA has considerable power to choose among single versus multiple evolutionary

rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of

life. We finally apply MECCA to an empirical example of body size evolution in carnivores, and show that there is no evidence for

an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful

alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking.

KEY WORDS: Approximate Bayesian computation, Brownian motion, Carnivora, comparative methods, evolutionary rates,

incomplete phylogenies.

Evolutionary biologists have long recognized that species rich-

ness and trait variation are not evenly distributed among clades.

Although constant rate processes provide reasonable null models

to explain the distribution of diversity and disparity within and

among lineages (e.g., Raup et al. 1973; Garland et al. 1993; Py-

bus and Harvey 2000; Harmon et al. 2003), shifts in evolutionary

rates provide compelling alternative explanations for these pat-

terns. As a result, several phylogenetic comparative methods have

been developed in recent years with a focus on testing whether

variation in the distribution of continuous phenotypic traits among

clades arises under constant or differing rates or patterns of evo-

lution (McPeek 1995; Butler and King 2004; O’Meara et al.

2006; Thomas et al. 2006, 2009; Revell 2008; Revell and Collar

2009).
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A wealth of phenotypic data exist in the primary literature

following over 200 years of museum collection and taxonomic

studies but we currently lack the means to fully leverage this in-

formation in broad-scale comparative analyses due to a paucity of

complete phylogenetic trees (but see Ackerly and Nyffeler 2004

and Sidlauskas 2007 for methods based on sister lineage com-

parisons). This is because estimates of rates of trait evolution are

explicitly dependent on knowledge of the phylogenetic covariance

among species (O’Meara et al. 2006; Ricklefs 2006; Thomas et al.

2006; Revell 2008), information that we lack for incompletely

sampled data (Bokma 2010; but see Fitzjohn et al. 2009; Fitzjohn

2010). Approximate Bayesian computation (ABC), a method for

fitting models and estimating parameters in a Bayesian frame-

work without likelihoods, provides an alternative that relaxes the

necessity of a fully sampled tree and data for inferring rates of

evolutionary change on large trees (Bokma 2010). Rather than

sampling parameter values based on likelihoods, in ABC, data

are simulated under the candidate model using parameter values

drawn from their prior distributions (Tavaré et al. 1997). The deci-

sion whether to accept or reject the proposed parameter values is

based on how close summary statistics of the simulated data come

to those of the observed data (for reviews see Joyce and Marjoram

2008; Csillery et al. 2010). As simulation of phylogenetic trees

and trait evolution is straightforward, ABC provides a feasible

way of estimating rates of continuous trait evolution when the

underlying phylogenetic covariance among species is not known

(Bokma 2010). A significant advantage of such an approach is

that, because data are typically transformed into summary statis-

tics for ABC, we do not require that all species be represented by

phenotypic data, only that the sample contains enough randomly

sampled species with respect to trait values that the summary

statistics adequately describe the distribution of trait values for

each unresolved lineage.

In this article we introduce a new, tree-based method called

MECCA (Modeling Evolution of Continuous Characters using

ABC) that integrates recent advances in ABC to estimate pos-

terior distributions for evolutionary rates, diversification rates,

and the root state of a continuously distributed phenotypic trait.

MECCA takes as input an incompletely sampled phylogenetic tree

and summary data on the distribution of trait values and species

richness within clades. We show here how MECCA can be used to

estimate the posterior densities of one or more evolutionary rate

parameters without knowledge of the underlying, within-clade

phylogenetic trees. We then use a novel model selection approach

to select among single and multiple Brownian rate models of

trait evolution. Finally, we show using simulation that our method

has considerable power to detect differences in evolutionary rates

from incomplete comparative data. We then apply MECCA to an

empirical example and show that a model of a constant evolution-

ary rate of body size evolution among carnivores is preferred over

a model with an elevated rate in aquatic compared to terrestrial

carnivores.

Methods
MODEL DEFINITION AND CHOICE OF SUMMARY

STATISTICS

Consider a phylogenetic tree, τ, with L terminal lineages, each

of which represents some higher level taxon such as a family or

order. Each single terminal lineage i ∈ {1, . . . , L} contains ri

species, for which the phylogenetic relationships are not neces-

sarily resolved. Each terminal lineage is also associated with an

incompletely sampled dataset D for a phenotypic trait, such as

body size. The goal is to estimate the rate of body size evolu-

tion in the entire clade based on the set of incompletely sampled

comparative data (τ, D). Because we lack an analytical solution

for the likelihood of a Brownian diffusion process on an unob-

served tree (Bokma 2010), we can instead use a Markov-Chain

Monte Carlo (MCMC) without likelihoods approach (hereafter

ABC–MCMC, Marjoram et al. 2003) to sample rate parameters

from their posterior distribution. For each generation of the ABC–

MCMC algorithm, we will replace each terminal lineage in our

tree with a simulated clade containing its complete complement

of species. We will then simulate trait evolution over the now

“completely sampled” tree using candidate Brownian motion pa-

rameters. As we discuss in detail below, the decision whether

to accept or reject proposed parameters will be made based on

comparison of the simulated trait data to our observed data.

We will initially assume that species richness R = (r1, . . . ,

rL) of our L extant clades result from a homogenous stochastic

birth–death process, whereas species’ trait values evolved under

a homogeneous Brownian diffusion process. These are by far the

most common and widely used models for comparative data (but

see Hansen 1997; Butler and King 2004; Rabosky and Lovette

2008a,b; Harmon et al. 2010 for other models that could poten-

tially be implemented in an ABC framework). The use of these

two processes in our model yields four model parameters that

must be estimated. Under a birth–death process, we model speci-

ation and extinction rates, λ and μ, respectively (Nee et al. 1994).

For a Brownian diffusion process, we require the root state, a, and

the Brownian diffusion rate, σ2 (Felsenstein 1985; Hansen and

Martins 1996; O’Meara et al. 2006).

We do not need to use approximate methods to sample birth–

death parameters. Given knowledge of a backbone phylogeny

and the number of extant species within each terminal lineage,

we can sample λ and μ directly from their posterior distribu-

tions using MCMC, where candidate diversification parameters

λ and μ are accepted or rejected based on L(λ, μ | τ, R), the

likelihood of observing both the backbone phylogeny τ and of

observing species richness values for each terminal clade given

those values (Rabosky et al. 2007). The estimation of extinction
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rates from molecular phylogenies has been criticized elsewhere

(e.g., Rabosky 2010) but incorporating extinction is important for

our purposes as it impacts the relative distribution of branching

events in a phylogenetic tree and thus the expected phenotypic dis-

parity among the tips for a given rate of trait evolution (O’Meara

et al. 2006). By simulating trees for the unsampled terminal clades

conditional on age, species richness, and the sampled diversifi-

cation parameters (Stadler in press), we obtain a distribution of

trees with branching times that are representative of the poste-

rior distribution π(λ, μ | τ, R). These simulated trees can then

be attached to the backbone phylogeny to create a distribution of

“completely sampled” phylogenies.

Although diversification parameters can be sampled directly

from their true posterior distributions using likelihoods, this is

not possible for Brownian motion parameters with incompletely

sampled data (Sidlauskas 2007; Bokma 2010). Using the ABC–

MCMC framework, we may instead derive an approximation of

the true joint posterior distribution π(a, σ2 | τ, R, D) via simulation

of trait evolution over our reconstructed, “completely sampled”

tree from the previous step. At each generation, we sample values

of a and σ2 from their respective prior distributions and simulate

data over the tree. Because likelihoods are unavailable, the deci-

sion whether to accept proposed parameters in our ABC–MCMC

will instead be made by computing the Euclidean distance, δ,

between the simulated data and observed data (Marjoram et al.

2003). If δ ≤ δcrit, where δcrit is a small, user-defined tolerance

specifying how far we are willing to allow the simulated data

to be from the observed data, then we will accept the proposed

parameters. If δ > δcrit, then we reject.

CHOICE OF SUMMARY STATISTICS

Because our trait data and tree are incomplete, we use a set of

summary statistics, S, to describe the phenotypic variation present

in D for the sampled taxa. In a Brownian diffusion process, the

expected mean and variance of a trait across taxa corresponds to

the root state a and the product of the path length and diffusion

rate σ2, respectively. We therefore use vectors of means, M =
(m1, m2, . . . , mL), and variances, V = (v1, v2, . . . , vL), of our

trait of interest for each terminal lineage as summary statistics.

Although not all species need to be represented by phenotypic

data, we do require that a sufficient proportion of species have

been sampled so that the summary statistics for each clade are

adequate descriptors of the total sample. We also assume that

this sample is random with respect to trait values. For example,

although 30 samples might be sufficient to describe the variation

within a clade of 100 species, we do not wish to sample the

30 smallest or 30 largest taxa.

For high dimensional datasets, δ is likely to be very large

for most simulations. This will result in low acceptance rates

and inefficient mixing of the MCMC chain unless a large

tolerance is used at the expense of precision (Joyce and Marjoram

2008; Leuenberger and Wegmann 2010). For even moderately

sized phylogenetic trees, the large number of summary statistics

described above (2L where L is the number of unresolved tip

clades in the tree) is therefore problematic. To overcome this,

we use a partial least squares (PLS) regression transformation

of the summary statistics to generate a new, lower dimensional

set of summaries, Spls, prior to computing the distance function

(Wegmann et al. 2009). PLS is similar to multivariate methods

such as principal components analysis in that orthogonal combi-

nations of variables called components are identified that explain

successive amounts of covariation in the original data. PLS scores

for each component are then computed as the dot product of the

summary statistics and their associated component loadings. PLS

is particularly advantageous for our purposes because combina-

tions of variables are chosen to maximize the variation explained

in a set of response variables. Summary statistics that are good

predictors of the Brownian rate, such as trait variances, will there-

fore receive large loadings on components associated with the

rate of trait evolution, whereas those that are poor predictors,

such as clade means, will receive small loadings. An additionally

advantage is that if the trait variance of one or more clades is

less informative for the Brownian rate, as might occur if there are

only a few species in an old lineage, then those clades will also

receive small loadings for PLS components predictive of the rate

parameter and their trait variances will be down-weighted when

deciding whether to accept or reject in ABC–MCMC.

We determine the number of PLS components to use based on

10,000 calibration simulations generated with parameters drawn

from the prior distributions of the model parameters (see below).

We first linearize our summary statistics from the calibration sim-

ulations using a Box–Cox transformation, resulting in 10,000 sets

of 2L summaries SBoxCox (Wegmann et al. 2009). PLS analysis is

then conducted using these standardized summaries as predictor

variables and the set of rates and root states used in those simula-

tions as response variables. Leveling off of root mean square error

plots of the parameters predicted by the regression can be used to

determine the minimum number of informative PLS components

to retain (Wegmann et al. 2009). For simulations under a homo-

geneous Brownian motion process, we found that the cumulative

percentage of total variance in the parameters explained always

leveled off at two PLS components. We finally produce a reduced

set of summaries Spls by multiplying the set SBoxCox by their asso-

ciated PLS loadings and summing over each component. For the

case of evolution under a single Brownian rate, this reduces the

dimensionality of the summary statistics from 2L to 2.

CALIBRATION

In regular MCMC samplers, it is possible to initiate the chain in

a region of low likelihood because improvements in likelihood,
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however small, will move the chain toward its target distribution.

In ABC–MCMC, this is much more difficult because proposals

are accepted on an absolute rather than relative basis. Therefore,

if the chain is initiated in a region of low likelihood and the

proposal width and/or distance for acceptance are small, ABC–

MCMC samplers can easily become stuck.

To overcome this problem, we use an initial, random sample

of simulations, referred to as calibration, to determine several

important tuning parameters for the ABC–MCMC (Wegmann

et al. 2009). In the calibration simulations, we generated 10,000

complete trees with branching times that are representative of the

posterior distribution π(λ, μ | τ, R) as described above. Over each

of those complete trees, we simulated trait evolution with a and

σ2 sampled randomly from their prior distributions. Finally, we

computed the associated summary statistics for each realization.

Based on these datasets, we first define δcrit such that for

5% of the simulations δ < δcrit. We next set proposal ranges

for each parameter as uniform widths corresponding to twice

their respective standard deviation among those 5% simulations

closest to the observed summary statistics. Finally, to avoid the

need to discard samples as burn-in, we initiate our ABC–MCMC

chains with the parameter values associated with the simulation

that resulted in the smallest distance δ. We start the full-MCMC

chain used to sample birth–death parameters at the maximum

likelihood estimates for λ and μ, computed according to Rabosky

et al. (2007). For this chain, we used an unbounded, uniform prior

on both λ and μ, and a proposal width of 0.1.

ESTIMATION OF POSTERIOR DISTRIBUTIONS

To account for the necessary loss of precision resulting from ABC

approaches, we applied a postsampling regression adjustment to

the retained posterior sample from our ABC–MCMC (Beaumont

et al. 2002; Csillery et al. 2010). We estimated posterior distribu-

tions for a and σ2 using the ABC–GLM postsampling regression

approach proposed by Leuenberger and Wegmann (2010) and im-

plemented in the software package ABCtoolbox (Wegmann et al.

2010). This approach assumes that the likelihood function can be

locally approximated by a general linear model (GLM) around

the observed values and has been shown to improve posterior es-

timates substantially over naı̈ve estimates from the ABC samples

(Leuenberger and Wegmann 2010).

FINAL MECCA ALGORITHM

We now summarize the combined likelihood/ABC–MCMC algo-

rithm that MECCA uses to estimate π(a, σ2 | τ, R, D), the joint

posterior distribution of the Brownian motion parameters a, σ2

from incompletely sampled data τ, R, and D.

M1. Perform calibration simulations.

M2. Linearize the C sets of summaries using a Box–Cox trans-

formation, define PLS components, and transform the

summary statistics. Transform the observed summaries to

produce Spls.

M3. Determine proposal ranges, δcrit and the starting position for

an ABC–MCMC chain of length N.

M4. Set λ and μ to their maximum likelihood estimates.

Set j = 0.

M5. If now at λ and μ, propose a move to λ′ and μ′ based on the

transition kernel q(λ, μ → λ′, μ′) and accept with proba-

bility min(1,
π(λ′,μ′)·L(λ′,μ′ |τ,R)·q(λ′,μ′→λ,μ)
π(λ,μ)·L(λ,μ|τ,R)·q(λ,μ→λ′,μ′) ) . Otherwise, stay

at λ and μ.

M6. Simulate replacement terminal clades based on τ, λ, μ,

and R.

M7. If now at a and σ2, propose parameters a′, σ2′
based on the

transition kernel q(a, σ2 → a′, σ2′
).

M8. Simulate phenotypic data D′ with root state a′ and rate σ2′,
compute the summary statistics S′ and transform them into

S′
pls based on the Box–Cox parameters and PLS compo-

nents computed in M2. Compute the Euclidean distance

δ = ||Spls − S′
pls || .

M9. If δ ≤ δcrit, accept a′, σ2′
with probability

min(1,
π(a′,σ2′

)·q(a′,σ2′ →a,σ)
π(a,σ2)·q(a,σ2→a′,σ2′ ) ); otherwise, remain at a, σ2,

regenerate phenotypic data D′ with a, σ2, compute the

summary statistics S′ and transform them into S′
pls

M10. Store λ, μ, a, σ2, and S′
pls

M11. Increment j. If j < N return to M5.

M12. Retain the t stored simulations with smallest δ and perform

ABC–GLM regression on those samples to estimate the

posterior distribution π(a, σ2 | τ, R, δ ≤ δt,), where δt is the

distances associated with the tth simulation closest to Spls.

We use symmetric transition kernels here and so the transition

ratios in steps M5 and M9 are equal to 1. Only the prior ratios

therefore require computing when determining the acceptance

probability.

TWO-RATE MODEL AND HYPOTHESIS TESTING

The approach that we describe above assumes that the evolution-

ary rate of phenotypic change is homogeneous across lineages.

We may, however, also be interested in determining whether the

phenotypic diversity observed for some clades evolved under a

different rate of trait evolution (McPeek 1995; O’Meara et al.

2006; Thomas et al. 2006, 2009). It is straightforward to modify

MECCA to do this with incompletely sampled data. We need only

simulate trait evolution in our clade of interest using a different

Brownian diffusion rate σ2
2 with its own prior distribution. With

this additional response variable, three PLS components are gen-

erally needed to capture the information present in the summaries.

We would also like to assess whether the one- or two-rate

model better fits the data. Model selection in ABC is often based

on Bayes factors, using acceptance ratios as approximations

of the marginal likelihoods for competing models (Beaumont
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et al. 2002; Bokma 2010). Leuenberger and Wegmann (2010)

suggested instead computing the marginal likelihoods of the

observed summary statistics directly from the regression done

in ABC–GLM and using these for model selection. This

approach, however, requires using the same summary statistics

for both models, something that we are unable to do when using

PLS-transformed summaries.

Here, we use an alternative, Bayesian approach to assess

support for a two-rate model. Our approach makes explicit use

of the fact that the one-rate model is nested within the two-rate

model and that hypotheses regarding rate differences are typically

directional. We compute the posterior support p under the two-

rate model for the two evolutionary rates σ2
1 and σ2

2 being different

and reject the single rate model if this probability is large. To be

specific, for a case where we expect σ2
2 to be larger than σ2

1, we

would estimate p = P(σ2
1 < σ2

2 | τ, R, D) using samples from

the joint posterior distribution of σ2
1 and σ2

2. We generated 107

random samples using an MCMC implemented in ABCtoolbox

(Wegmann et al. 2010) and thinned it down to 105 to reduce

correlation among samples.

EMPIRICAL EXAMPLE AND SIMULATION TESTS

The mammalian order Carnivora comprises 286 species dis-

tributed among 16 families, and spans five orders of magnitude

in body mass (Gittleman and Purvis 1998; Nowak 1999). Most

carnivorans are terrestrial but all members of one monophyletic

clade, the Pinnipedia (seals, sea lions, and walruses), are semi-

aquatic. Unsurprisingly for aquatic mammals that occur in all

oceanic regions (Deméré et al. 2003), some species attain ex-

tremely large sizes, including the largest extant carnivoran, the

Southern elephant seal Mirounga leonina, with a body mass of up

to 3700 kg (Nowak 1999). We therefore ask whether the dramatic

range of body sizes observed in the pinnipeds is due to a clade-

specific increase in the rate of body size evolution relative to that

of terrestrial carnivorans.

We used the time-calibrated, family level phylogeny of

Carnivora (Fig. 1) from Eizirik et al. (2010). Although some

families were represented by multiple species (range: 1–8), we

pruned the tree down to one representative per family (L = 16)

and assigned each a species richness value based on the number

of recognized taxa in Wozencraft (2005). We also assigned each

family a mean and variance for natural log-transformed (ln) body

mass data (kg) from the PanTHERIA database (Jones et al. 2009).

Not all carnivorans were represented by body mass data in this

database (Fig. 1B). However, because data are transformed into

summary statistics, we only require that the summary statistics

for the available samples adequately describe the distributions for

all species, which we assume here they do.

We placed a normal prior on ln(σ2) (mean = –2.53, SD =
2). The mean was determined by computing the mean square of

independent contrasts from the family level tree and family mean

body masses (Revell et al. 2007). We bounded the rate prior at

{–4.961845, 4.247066}, corresponding to the natural log of half

the minimum and twice the maximum rates of body size evolution

reported across a range of species by Harmon et al. (2010). The

prior on the root state was set as a uniform distribution U = [–6.9,

3.21], corresponding to a range from 1 g to 25 kg. These values

span the masses of the smallest living mammals up to over an order

of magnitude larger than estimated masses for stem carnivorans

(Finarelli and Flynn 2006).

We first investigated the performance and power of MECCA

for the one- and two-rate carnivore models using 1000 simulated

datasets. Trait data were simulated over the carnivore phylogeny,

with unsampled terminal clades replaced by trees containing the

correct number of species and of the correct stem age (Stadler

in press), simulated under maximum likelihood estimates of λ

and μ. For each simulation, we drew root state and evolution-

ary rate parameter values (a, σ2
1, and σ2

2) from their respective

prior distributions. We then simulated two datasets per set of

parameters—one under a one-rate model and one dataset under a

two-rate model.

We checked the number of MCMC generations required to

achieve convergence on the target distributions for the Brownian

motion parameters for both models. To determine if and when

convergence was achieved, we used the R-statistic (Gelman and

Rubin 1992) computed for 100 simulated datasets. The R-statistic

compares the among- and within-chain variances of each pa-

rameter for two or more independent MCMC chains. As chains

converge on the same target distributions, R should approach 1.

We ran two, independent chains of 150,000 steps for each simu-

lated dataset and computed R at regular intervals from the output.

For both rate models, we observed R values below 1.01 in most

replicates after 100,000 generations (Fig. 2), indicating acceptable

convergence had been achieved. We thus used chains of 100,000

iterations for all other analyses.

We next checked the coverage of the posterior distributions

by computing posterior quantiles of the true parameter values for

the simulated datasets. If MECCA produces unbiased parameter

estimates then we should find that, on average, we recover the cor-

rect values. For example, the true value of each parameter should

be located in the 50% and 95% highest posterior density regions

with probabilities 0.5 and 0.95, respectively. This is equivalent to

their posterior quantiles (the quantile of the posterior distribution

within which the true value falls) being distributed uniformly on

U[0,1] (Cook et al. 2006). We computed the posterior quantiles

for all 1000 simulated datasets and tested for uniformity using a

Kolmogorov–Smirnov test.

We also investigated Type I error rates and power (1 – Type

II error) to reject the one-rate carnivore model in favor of the two-

rate model. We first plotted posterior probabilities of the two-rate
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60 50 40 30 20 10 0
MYA

Family richness variance sample size
1 0.77 0 1

40 2.27 1.59 33
2 -0.12 0.13 2

34 1.07 0.66 27
4 3.40 0.80 4

33 0.28 0.48 29
8 0.33 0.92 8

35 1.68 0.68 32
8 4.84 0.30 8

19 5.33 0.75 19
16 4.78 0.38 14
1 6.95 0 1

12 0.36 0.57 10
1 8.55 0 1

14 0.74 0.53 13
59 0.54 2.26 49

A B

Nandiniidae
Felidae
Prionodontidae
Viverridae
Hyaenidae
Herpestidae
Eupleridae
Canidae
Ursidae
Phocidae
Otariidae
Odobenidae
Mephitidae
Ailuridae
Procyonidae
Mustelidae

Prionodontidae
Felidae

Viverridae

Herpestidae
Eupleridae

Hyaenidae

Nandiniidae

Canidae
Ursidae

Odobenidae
Otariidae
Phocidae

Mephitidae

Ailuridae

Mustelidae
Procyonidae

mean mass

Figure 1. (A) Time-calibrated phylogeny of Carnivora used to estimate rates of trait evolution using MECCA. (B) Summary data on

species richness and means and variances for body size per family. The final column gives the number of species for which body size data

were available.

model, p = P(σ2
1 < σ2

2 | τ, R, D), against the proportion of cases for

which the two-rate model is true. If MECCA produces unbiased

estimates of p, we would expect a 1:1 relationship between p

and the proportion of cases for which σ2
1 < σ2

2. For example,

considering all cases analyzed that receive P = 0.1, we would

expect to find that σ2
1 < σ2

2 is true in approximately 10% of cases.

If posterior probabilities are low relative to the proportion of true

two-rate cases, then MECCA is overly conservative and power

to detect rate shifts is low. The magnitude of differences in rates

is also likely to affect our ability to detect rate shifts. Ideally,

posterior probabilities for the two-rate model would be low (∼0)

when the two rates are identical and rise rapidly to values > 0.9

for differences in rate that are greater than zero. Realistically,

smaller differences in rate will be more difficult to detect than large

differences (e.g., Collar et al. 2005). We investigated how rate

differences affect our model selection abilities by binning samples

according to the magnitude of the difference between the two rates

and plotting rate differences against posterior probabilities of the

two-rate model. We then computed the rate difference required

to achieve a “significant” result at the α = 0.05 level. We finally

checked for the proportion of cases in which we falsely reject the

one-rate model, equivalent to Type I error.

After conducting the simulation tests, we ran two separate

MECCA analyses using the carnivore dataset. For the first, we

assumed a single rate of body size evolution for all Carnivora. In

the second, we allowed crown pinnipeds (three terminal lineages

and one internal branch, Fig. 1A) to evolve under a different rate

of body size evolution. We used the same prior distribution for

both trait evolutionary rates for the two-rate model. We ran 10,000

calibration steps for both models, from which we computed PLS

Figure 2. Convergence diagnostics for the single (black) and two-rate (blue) MECCA based on two identical chains for the 1000 simulated

datasets. Circles indicate median R values at a given generation of the MCMC chain, while dashed lines give the 90% quantiles. R rapidly

approaches 1 for all parameters, indicating adequate convergence is achieved within 100,000 generations.
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Figure 3. Cumulative density function plot of posterior quantiles

for the known parameter values used in 1000 simulated datasets

from the carnivore tree. Posterior distributions were estimated

from the output of MECCA using ABC–GLM. The distributions are

expected to be uniform (light gray line) if posteriors are unbiased.

Root state estimates are unbiased (P = 0.13). For the rate param-

eters, quantiles are biased toward larger values, indicating that

posterior distributions for these parameters are too wide.

components for transformation of summary statistics and tuning

parameters for the MCMC. We then ran 100,000 generations of

ABC–MCMC under each model and retained the 5000 samples

closest to the observed data for estimation of parameter poste-

rior distributions using ABC–GLM. To perform model selection,

we computed the posterior probability that σ2
pinnipeds was greater

than σ2
terrestrial carnivores based on 100,000 samples from the joint

posterior distribution of evolutionary rates.

Results
SIMULATION TESTS

We ran MECCA on a total of 1000 simulated datasets to assess the

performance of our approach. Although estimates of the root state

appear well calibrated, rate estimates appear to be conservative,

with flatter posterior distributions than expected (Fig. 3). Simi-

larly, we found the posterior support p = P(σ2
1 < σ2

2 | τ, R, D), to

be too conservative. For instance, the true proportion of cases for

which σ2
1 < σ2

2 is up to 20% higher than estimated (Fig. 4A). We

used the simulations to improve on model selection performance

by treating the estimator p as a summary statistic and attempting

to compute the adjusted posterior probability p̂ = P(σ2
1 < σ2

2 |
p). We found that p̂ can be adequately approximated as a logistic

function of p (Fig. 4A).

For our simulations, we found substantial power to detect

differences in the rate at which morphological variation evolves

in different clades. For instance, median p̂ values are found to

be significant at the α = 0.05 level if the difference in ln(rates)

was 1.75 or more (Fig. 4B). We finally used our simulations to

assess Type I errors when rejecting the one-rate model in favor

Figure 4. Performance and power of MECCA assessed from 1000 simulated datasets. (A) Posterior probabilities P of a two-rate model

plotted against the proportion of simulations for which the two-rate model is the true model (simulations are binned by posterior

probabilities). The dashed gray line indicates the expected linear relationship. Posterior probabilities greater than 0.5 are underestimated

whereas those below 0.5 are slightly overestimated. The blue curve shows the fit of a logistic regression to the same data. (B) The

relationship between absolute difference in rates (on the natural log scale) and P for the two-rate model (black solid line = median,

90% quantiles = dashed line). For large differences in rate, we obtain strong posterior support for the two-rate model. However,

support rapidly declines for smaller differences in rate. The blue lines show adjusted posterior probabilities, p̂, for the same data after

transformation by the logistic regression estimated in A. Use of p̂ increases confidence in the two-rate model for smaller differences in

rate. (C) Type I error. Note that both axes use a log-scale centered at 0.5. Cumulative distributions of the posterior probabilities that σ2
2 <

σ2
1 for 1000 simulated datasets generated under the one-rate model. These distributions indicate the Type I error of falsely rejecting the

null model (one-rate model). For well-calibrated methods, the Type I error are expected to be uniformly distributed and hence to show

a cumulative distribution on the diagonal (gray dashed line). Model choice on the raw posterior probabilities appears to be much too

conservative (black line). The transformed posterior probabilities, however, appear to be reasonably calibrated (blue line).
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of the two-rate model. Model choice based on p was found to be

too conservative as the proportion of cases in which we falsely

reject the single-rate model (0.7%) was much below the typical

5% threshold (Fig. 4C). However, model choice based on p̂ was

much improved, with the one-rate model being falsely rejected

in 3.1% of cases (Fig. 4C). Overall these results demonstrate

the ability of MECCA to reliably discern a two-rate process for

modest differences in rates compared to likelihood approaches

using completely sampled data (e.g., Collar et al. 2005).

RATES OF BODY SIZE EVOLUTION IN CARNIVORA

We recovered similar estimates for diversification parameters un-

der both single- and two-Brownian rate models as expected. We

therefore concatenated posterior samples for diversification rate

parameters for summary of results. For ease of interpretation,

we have also converted speciation and extinction rates to net

diversification (r = λ – μ) and turnover (ε = μ/λ) rates. We re-

covered a mode net diversification rate of 0.07, combined with a

turnover rate of 0.79. Highest Posterior Density (HPD) intervals

were broad for both parameters (r: 95% HPD 0.03–0.10; ε: 95%

HPD 0.19–0.97). The use of a one- or two-rate model had no ef-

fect on root state estimates (Table 1). Root state estimates appear

large in comparison to estimates based on the fossil record (e.g.,

Finarelli and Flynn 2006). Ancestral state reconstructions have

been shown to perform poorly when the clade in question expe-

rienced a directional trend in trait evolution and fossil data are

not included (Finarelli and Flynn 2006; Albert et al. 2009). This

result is therefore likely a function of the data, rather than poor

performance of our method. Rates estimated from the single- and

two-rate models were similar, although the 95% credible range

on the pinniped rate was much wider (Table 1). A contour plot of

the joint marginal posterior distribution of rates for the two-rate

model further suggests that the two rates do not deviate substan-

tially from expectations of a single-rate model (Figs. 5A,B) and

Table 1. Mode and 95%; HPD intervals of the marginal poste-

rior distributions for the Brownian rate (σ2) and root state (a),

estimated for the carnivore dataset using MECCA. Posteriors were

computed using ABCGLMon the best 5000 simulations. Note that

all estimation for both parameters was done on the natural log

scale, but parameters have been transformed here for ease of

reading.

Two-rate model
One-rate

Parameter model Background Pinnipeds

σ2 0.055 0.054 0.053
(0.016–0.183) (0.011–0.184) (0.008–0.302)

a 8.98 8.09
(1.90–24.76) (1.63–24.75)

Figure 5. (A) Contour plot of the joint posterior distribution for

pinniped and terrestrial carnivore body size evolutionary rates.

Hotter colors indicate lower HPD regions. Note that the joint pos-

terior distribution is projected into the entire prior space here. The

50, 90, and 95% highest posterior density regions are marked. The

asterix indicates the mode rate estimated by MECCA for the single

rate model. (B) the posterior distribution for the evolutionary rate

under a single rate model and (C) the posterior distributions for

the root state under one (solid line) and two-rate (dashed line)

models.

the posterior probability of a model with pinnipeds evolving under

a faster rate than terrestrial carnivores is only slightly greater than

0.5 (P = 0.55). Adjustment based on the logistic regression fit to

the simulated datasets increased the posterior probability of the

two-rate model to 0.72. Although three-fourths of the posterior

weight support a model where pinnipeds evolve under a faster

rate than terrestrial carnivores, a model of a constant rate of body

size evolution across all carnivores cannot be rejected.

Discussion
By relaxing the requirement of a completely sampled tree and

data, approximate Bayesian methods for estimating evolutionary

rates, such as the method presented here, have the potential to

dramatically expand the breadth of question that can be asked

about the pace of phenotypic evolution on the tree of life. We

end here by comparing the performance of MECCA to existing

methods for inferring rates of trait evolution, as well as consider-

ing some future extensions and limitations of ABC approaches in

comparative methods.

Our simulations demonstrate that we are able to obtain a

great deal of the information contained in raw trait data regarding

the Brownian rate and root state by using PLS transformations of

means and variances for unsampled clades as summary statistics in

ABC. PLS loadings are determined using summary statistics from

the calibration simulations and their associated parameter values.

By using data simulated on the backbone tree in this way, PLS ef-

fectively weeds out summaries from less-informative clades while

more heavily weighting summaries from informative clades. This
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is essential in the context of an unsampled phylogeny as treat-

ing all summaries equally would result in an old, species-poor

clade contributing the same amount of weight to the acceptance

decision as a young, species-rich clade. In this sense, using PLS-

transformed summaries in ABC–MCMC is analogous to incorpo-

rating the phylogenetic covariance matrix in likelihood methods.

One could imagine replacing our ABC approach with a likelihood

equivalent that integrates over uncertainty in the topology of un-

sampled clades. For example, Fitzjohn et al. (2009) and Fitzjohn

(2010) demonstrated that when estimating rates of phenotypic trait

evolution, it is possible to integrate over uncertainty in the phylo-

genetic position of taxa that have been sampled in the phenotypic

dataset but are not in the tree. Although these approaches perform

well with relatively sparsely sampled clades, they are only com-

putationally practical for clades containing up to several hundred

species (Fitzjohn et al. 2009). Our ABC approach performs well

with an extremely sparsely sampled phylogeny and can handle

trees containing extremely large numbers of species. An analyt-

ical solution yielding the likelihood of an observed mean and

variance for a given evolutionary rate over an unsampled clade

remains the ideal (Bokma 2010). However, our results indicate

that approximate approaches to estimating rates of trait evolu-

tion on large, sparsely sampled phylogenies provide a compelling

alternative.

There are several appealing aspects to the posterior prob-

abilistic approach that we took here. Our approach takes into

account the entire joint posterior distribution and therefore ac-

counts for uncertainty in parameter estimation, something that

may have a significant impact in evolutionary models based on

Brownian motion (e.g., Polly 2001). Perhaps more significantly

though, using a posterior probabilistic approach allowed us to take

advantage of the reduced data dimensionality provided by PLS-

transformed summaries (Wegmann et al. 2009) while also making

full use of methods that apply posterior-adjustments to the output

of an ABC–MCMC chain (Leuenberger and Wegmann 2010).

Moreover, because our model selection does not contrast inde-

pendently approximated likelihood functions, general criticisms

leveled at model selection via Bayes factors in ABC (Robert et al.

unpubl. ms.) do not apply to our case. Computation of posterior

probabilities based on samples from the joint posterior distribu-

tion of the two-rate parameters is straightforward in the case of a

two-rate model. For more complicated, multiparameter Brownian

models, visualization of the joint posterior distribution (Fig. 5A)

will be more challenging but the approach to sampling from the

joint space remains the same.

Simulations indicate that we retain considerable power to

detect differences in the rate at which morphological disparity is

accumulated from incompletely sampled comparative data com-

pared to complete data. Using uncorrected posterior probabilities,

P, we found that we would be able to reject a single Brownian rate

model with a high degree of confidence (5% significance level) if

the absolute difference between the two rates in natural log space

was larger than 2.7 (Fig. 3B), equivalent to the faster rate being

around 15 times greater than the background rate. This is com-

parable power to that found by Collar et al. (2005) and Eastman

et al. (in press) for approaches that use likelihood to estimate rates

from completely sampled phylogenies. However, model selection

in MECCA based on p̂ was greatly improved relative to these

approaches. Here, rate differences of only 1.75, equivalent to a

rate ratio of 5.75, were required to accept the two-rate model at

the 5% significance level (Fig. 3B). We note that the exact power

will be specific to the phylogenetic tree studied and is expected

to be greater for larger trees. Nonetheless, these findings suggest

that the power to detect rate shifts in our ABC approach based

on incomplete trees and summary statistics of trait data for ter-

minal clades is comparable to likelihood methods using complete

datasets, even where rate differences are relatively small.

As with any Bayesian approach, the choice of prior distri-

butions can have a large impact on the results obtained. We used

a truncated normal prior range for the evolutionary rate, and a

bounded uniform distribution for the root state, although other

distributions could be envisioned. Our simulation tests, which

were based on parameters drawn from the same prior distribu-

tions, suggest that the use of a wide, normal prior with upper

and lower bounds does not adversely affect parameter estimates

when the true values lie far from the mean (Fig. 2A). Others

(e.g., Schluter et al. 1997; O’Meara et al. 2006; Thomas et al.

2006) have assumed uninformative, unbounded uniform priors

on model parameters when fitting Brownian motion models to

comparative data. Unbounded priors can be problematic in ABC

because here proposals are accepted on absolute, rather than rel-

ative terms. That is, a proposal is accepted only if the simulated

data fall within some specified distance of the observed data rather

than if the proposal increases the likelihood of the observed data,

relative to the current state. Wide priors can therefore occasion-

ally allow ABC–MCMC samplers to become stuck in regions of

low likelihood or, if the starting values are not appropriate, fail-

ure of the chain to even initiate. We overcame this problem in

part by using a calibration step prior to initiating ABC–MCMC.

However, because the tolerance for the ABC–MCMC, as well as

several tuning parameters, are determined based on the calibration

simulations, a wider prior will require a longer calibration to en-

sure suitable values are chosen. A bounded prior further alleviates

some of these issues by limiting sampling to a reasonable range

of values. Regardless of the prior distribution used for ABC, the

range of values should be appropriate given the data in hand, as

in any Bayesian approach. Limiting the width and/or shape of the

prior on the root state based on physiological, fossil or some other

form of prior information may be wholly appropriate in some

contexts. In the absence of prior information, using the range of
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tip values however is unlikely to be sufficient (e.g., Polly 2001).

Posterior distributions piled up against the upper or lower limit of

the prior provide a useful indication that the bounds of the spec-

ified prior are inappropriate given the model and data. The units

of the data, for example, grams versus kilograms, or millimeters

versus meters, and the age of the clade should also be considered

when determining the appropriate width of the root state and rate

priors.

In this implementation, we assumed time invariant rates for

both diversification and trait evolution. However, the great flex-

ibility of ABC approaches is that, provided that it is possible

to simulate data, parameter values can be sampled under any

models for which likelihood expressions are or are not available

(e.g., Rabosky 2010; Bokma 2010). It is straightforward, provided

informative summary statistics exist, to accommodate a more di-

verse range of models, such as early burst (Harmon et al. 2010),

Ornstein-Uhlenbeck (Hansen 1997; Butler and King 2004), evo-

lutionary trend (Hunt 2006) or single-shift along an internal edge

(e.g., Thomas et al. 2006, 2009; Revell et al. in press) models

of trait evolution. One could also use ABC to fit models where

diversification rates depended on character states (e.g., Maddison

et al. 2007). A particularly tractable extension would be to simul-

taneously infer rates of trait evolution for unsampled clades in

conjunction with identification of diversification rate shifts using

the MEDUSA approach (Rabosky et al. 2007; Alfaro et al. 2009).

Differences in diversification parameters among lineages have the

potential to greatly influence the inference of trait evolutionary

rates in the ABC context because higher extinction rates will tend

to result in branching events that are biased toward the recent, and

thus lower expected trait disparity (Pie and Weitz 2005; O’Meara

et al. 2006). It should be noted that such an approach would not res-

cue MECCA from producing a false positive result if the putative

shift in the rate of morphological trait evolution were associated

with an unsampled clade that suffered high rates of extinction

relative to other lineages. This is because a clade that diversified

under high extinction rates will be “tippy” and have lower phe-

notypic variance among species than a clade with the same age

and species diversity that diversified under the same net rate of

diversification but with low extinction. If we lack information re-

garding the true tree shape and fit a model that assumes constant

extinction, we would bias ourselves toward finding that the tippy

clade showed a decrease in the rate of phenotypic evolution over

time. Although a general problem associated with incompletely

sampled data, including information on crown clade ages, based

on molecular or paleontological data, would be a useful way of

dealing with this issue.

In conclusion, ABC methods have great potential in phylo-

genetic comparative biology, particularly where models of trait

evolution can be simulated but analytic expressions cannot be

solved. Although a complete phylogeny and phenotypic dataset

remain the ideal for comparative analysis, we have shown here

how an ABC approach can be used to infer rates of evolution

from large, incompletely sampled data. By applying MECCA to

a backbone phylogeny of carnivores, we have been able to show

that there is no evidence for a faster rate of body size evolution

in the aquatic pinnipeds compared to terrestrial carnivore species,

despite the considerable power of MECCA to detect differences

in evolutionary rates in this context, as we found through simula-

tions. The larger body masses found in the pinnipeds might thus

just be the result of the stochastic nature of Brownian processes.

Alternative explanations include a distinct evolutionary optimum

among pinnipeds (e.g., Butler and King 2004), or rapid evolution

of body size in the stem lineage of pinnipeds, followed by rel-

atively stable evolution since that time (Simpson 1953; Thomas

et al. 2006, 2009; Revell et al. in press), rather than a clade-wise

elevated rate. The ABC approach presented here can be readily

extended to contrast such different evolutionary models, even at

phylogenetic levels for which we are unlikely to have complete

trees in the near future.
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