

1. Proximity effect

- For an enzymatic reaction to occur, substrate must come in close proximity to the active site groups of the enzyme.
- Substrate should be properly oriented at the active site of the enzyme.
- Following the above positioning, the conformational changes on ES complex should cause sufficient strain to bring the ES complex to E-Transition state complex.

Proximity effects

 Reducing the freedom of motion of the substrate at the active site will increase the rate of the reaction.

- The imidazole group of histidine often participates in several enzyme reactions at neutral pH, because it has a pK_a value of 6.
- It readily ionizes at the physiological pH value.
- The protonated form of imidazole serves as the general acid and its conjugate base is the general base.

4. Covalent catalysis

- Often enzymes use one of their side chains to form an unstable covalent bond with the substrate.
- This enzyme partial substrate intermediate is further degraded in a secondary reaction completing the catalytic cycle.

Nucleophiles participate in covalent catalysis - examples

- Hydroxyl group of Serine chymotrypsin
- Thiol group of Cysteine Papain
- Imidazole group of Histidine -
- Carboxyl groups of aspartic and glutamic acids -

Chymotrypsin, Trypsin and Elastase

- They show 40% of the amino acids are identical.
- Interior 60% of the amino acids are identical.
- Their 3-D structure is very similar.
- All three have Asp His Ser Triad at the active site.
- All are inactivated by diisopropylfluorophosphate.
- They have same catalytic mechanisms.
- Oxyanion hole stabilizes tetrahedral intermediate.
- Sequence around active site serine in all is Gly-Asp-Ser-Gly-Gly-Pro.
- But markedly different in substrate specificity.

Classification of proteases

Aspartyl proteasePepsinAspartic acidsAsp - 32; Asp - 215Thiol proteasePapainCys - 25Cys - 25; His - 159Metallo proteaseCarboxy- peptidase AZinc ionArg - 127; Glu - 270	Protease type Serine protease	Example Chymotrypsin	Active site Ser - 195	Active site amino acids Ser - 195; Asp 102: – His 57
Thiol proteasePapainCys - 25 His - 159Cys - 25; His - 159Metallo proteaseCarboxy- peptidase AZinc ion Glu - 270Arg - 127; Glu - 270	Aspartyl	Pepsin	Aspartic acids	Asp – 32; Asp – 215
MetalloCarboxy-Zinc ionArg – 127;proteasepeptidase AGlu - 270	Thiol protease	Papain	Cys – 25	Cys – 25; His – 159
	Metallo protease	Carboxy- peptidase A	Zinc ion	Arg – 127; Glu - 270

