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Conventional synthesis 
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Synthesis of peptide by conventional 
method 
•  Time consuming 
•  Laborious 
•  Complicated purification needed 
•  Low yield 

Solid Phase Synthesis 
 

B

B

B A

A

A

A

A
A

A A

A B

B

B

B B

B

B

B

B

B

B A B
A B

A B
A B

A B

A B

B

BB

B

A B
B

B

B

A B
B

B B
B
B



2/3/10


3


In Solid Phase Synthesis, Products 
Can Be Isolated Easily By Filtration 
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Solid Phase Synthesis -Advantages 

•  Reaction can be forced to go towards 100% yield 
by excess reagents. 

•  Recovery of the products are easy - Simple 
filtration as opposed to complicated precipitation 
and recrystallization. 

•  Purification of products is easy - simple wash. 
•  Several steps can be accomplished on the same 

resin. 
•  In general, large scale saving in time, effort and 

reagents. 
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Steps Involved in a Dipeptide Synthesis   
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X Solid support with a functional group

Attach first amino acid

Attach second amino acid

Cleave the peptide

Continue the process
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Resin made by copolymerizing 
styrene and 1% divinylbenzene 

 

Resins (other than polystyrene) used 
in solid phase synthesis : 

•  Polymethylmethacrylates 
•  polyacrylamides 
•  Phenolic resins 
•  Polysaccharides 
•  Inorganic supports such as Silica and 

Porous glass 
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First: Functionalizing the resin 
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Step -1: Anchoring the first amino acid - 
The first t-Boc amino acid is attached via benzylester 
group to the insoluble resin.  
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Step-2: Deprotection of the amino group  
-  t-Boc is completely removed by 50%TFA in 
dichloromethane, while the benzyl ester is untouched.  

CF3COOH

NH3 OOC

HR1

Deprotect the 
 amino group

N OOC

HR1

O

O

H

Step 3: Deprotonation - Tertiary amines, 
(diisopropyl ethyl amine) deprotonate the salt.  
 

NH2 OOC
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HR1

Deprotonate 
 

R3N
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Step 4: Coupling the next amino acid - 
Dicyclohexylcarbodiimide activates the carboxyl group of the 
second amino acid and allows the coupling to the first amino 
acid. Water is extracted to form dicyclohexylurea.  

Couple 
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Mechanism of coupling reaction  
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Step 5: Continue peptide synthesis   

Tripeptide

Repeat Steps 2,3,4 
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Step 6: Cleave the peptide from resin - 
Finally the free peptide is liberated from the 
resin by a strong acid such as HF.   
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Cleave the peptide HF
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   Anchor the first amino acid
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Deprotonate

CF3COOH
R3N

NH2 OOC

HR1

1

23

4

56

N=C=N

NH OOC

HR1

NOC

HR2

O

O

H
N     HOOC

HR2

O

O

H

+ Couple 

Repeat Steps 2,3,4 

Trimeric peptide

Cleave the peptide

NH HOOC

HR1

NH2OC

HR2
HF

Solid phase synthesis 
•  Bruce Merrifield synthesized 

Ribonuclease (124 amino acid)  and 
interferon (155 amino acid) using solid 
phase peptide synthesis. 
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ADVANTAGE:  SYNTHESIS OF HYDROPHOBIC PEPTIDES 
 

Beyond tetrapeptide
aggregation and 
precipitation
prevents further 
synthesis in solution

   IN SOLID PHASE, OCTAISOLEUCINE AND EVEN DODECYL 
   ISOLEUCINE HAVE BEEN SUCCESSFULLY SYNTHESIZED
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For a 50 amino acid peptide synthesis, 
how coupling efficiency at each step 
affects the final purity of the product. 
COUPLING EFFICIENCY (%) PURITY OF PRODUCT (%) 

100.0 100.0 

99.99 99.15 

99.9 94.79 

99.5 77.60 

99.0 60.44 
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Acyloxymethyl-Pam-Resin 
Insertion of acetamidomethyl group (green) in 

between the benzyl ester and polystyrene resin 
increased the stability of benzyl ester to 
trifluoroacetic acid by about 400 times. 
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Use of photolabile resin as a mean 
 to remove the synthesized peptide 
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Different protecting groups 
Photolabile group at the first linkage site.  
t-BOC for protection of side chains.  
Thiol labile group for protection of N-terminals.  
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TO AVOID THE SN1 REACTION, A BASE 
(DIMETHYLSULFIDE) IS ADDED TO HF IN A 1:1 
RATIO. THIS FORCES THE CLEAVAGE TO SN2 
REACTION AND PREVENTS THE BENZYL CATION 
FROM ATTACKING THE PEPTIDE. 
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