From Gene to Protein

- Beadle and Tatum
 - Analyzed Fungi *Neurospora crassa* mutants
 - Mutants were UNABLE to grow without Arginine (an amino acid)
 - Other biochemical experiments indicated:
 Precursor → Ornithine → Citrulline → Arginine
 - Each biochemical reaction requiring an enzyme

Hypothesis: ONE gene ONE enzyme

- Beadle and Tatum
- Mutants could be classified into one of three groups
 - Grew with ornithine supplements
 - Grew with citrulline supplements
 - Grew only with arginine supplements
- Indicates that a gene is required for each step
 - Precursor \rightarrow Ornithine \rightarrow Citrulline \rightarrow Arginine

Modifications to Beadle and Tatum's Hypothesis

- Reasons for modifications:
 - Enzymes can contain multiple protein and/or RNA subunits
 - Not all proteins are enzymes
- ONE gene ONE polypeptide hypothesis
 - Still not entirely accurate as we will learn
 - Genes can encode for RNAs that are NOT used as a code for protein (ie NOT mRNA)
 - A single gene can be used to generate multiple different proteins

$\mathsf{DNA} \rightarrow \mathsf{RNA} \rightarrow \mathsf{Protein}$

• DNA \rightarrow RNA

- Transcription
 - The production of ribonucleic acid using DNA as a template

• RNA \rightarrow Protein

- Translation
 - The production of a polypeptide using an RNA as a template

(a) Prokaryotic cell

⁽b) Eukaryotic cell Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Transcription and Translation occur in BOTH procaryotic and eucaryotic cells

- Procaryotic Cells
 - No Nucleus
 - Transcription and Translation are coupled
- Eucaryotic Cells
 - Nucleus
 - Transcription and Translation occur in different cellular locations

Copyright @ Pearson Education, Inc., publishing as Benjamin Gummings.

- One strand of DNA is used as a Template to produce a single strand of RNA
- RNA is produced in the 5' to 3' direction
 - The template DNA strand is read in the 3' to 5' direction
- In protein production, the template RNA (termed a messenger RNA) is read in the 5' to 3' direction
- 3 nucleotides, or a codon, code for a single amino acid

Genetic Code

- 4 RNA nucleotides
- 20 amino acids
- Theoretical
 - 2 letter code
 - 4 x 4 = 16 possibilities NOT ENOUGH
 - 3 letter code
 - 4 X 4 X 4 = 64 possibilities ENOUGH
- Experimental
 - Nirenberg produced an artificial poly U RNA and performed translation in a test tube
 - Produced a polypeptide with just phenylalanine

			Secon	d base		
		U	С	Α	G	
First base (5' end)	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA GIn	CGU CGC CGA CGG	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
	A	AUU AUC AUA AUA	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGA AGG	D C A C Third base
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG	GGU GGC GGA GGG	U C A G

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Genetic Code

- Start
 - AUG
- Stop
 - UAA, UAG, UGA
- Non overlapping
 - 9 nucleotides contains only 3 codons!
 - UGC AGU CCA
- Redundant
 - Some amino acids are coded for by multiple codons
 - Proline
 - CCU, CCC, CCA, CCG
- The genetic code is essentially the same in all 3 domains: bacteria, archaea, eucaryotes

Transcription

- The process by which a DNA template is used to build a strand of RNA
- RNA Polymerase
 - The enzyme responsible for the condensation/ dehydration reactions that build an RNA
- Occurs in the 5' to 3' direction
- Occurs in three stages
 - Initiation
 - Elongation
 - Termination

Transcription

Initiation

- A region of the double stranded DNA serves to attract the RNA polymerase. This region of DNA is termed the **Promoter** Region
 - Promoter regions frequently contain a TATA box
- Transcription Factors:
 - Proteins that interact with the nucleotides of the DNA
 - Recruit the RNA polymerase

TranscriptionInitiation (cont'd)

- The transcription initiation complex results from the transcription factors and the RNA polymerase
- The double helix is temporarily unwound as the RNA polymerase produces an RNA strand in the 5' to 3' direction
- The DNA template is read by the RNA polymerase in the 3' to 5' direction

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Transcription

• Elongation

- Addition of nucleotides to the 3' end of the growing RNA continues
- Termination
 - Procaryotes
 - Triggered by a sequence in the DNA called the terminator
 - Eucaryotes
 - Not entirely understood, but the RNA is cleaved from the RNA polymerase following transcription of a poly adenylation signal AAUAAA

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

RNA processing

- Only occurs in eucaryotic cells
 - Alteration of the mRNA ends
 - RNA splicing

- Pre-mRNA
- RNA Processing
 - mRNA

• 5' end

• A modified guanine nucleotide is added

• 3' end

 After the polyadenylation site AAUAAA a string of adenine nucleotides is added (between 50 – 250)

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

- 5' cap
- 5' UTR
 - Untranslated region
 - Runs from the transcription start site (TSS) to the start codon (AUG)
- Coding region
- 3' UTR
 - Stop codon until the poly (A) tail
- Poly(A) tail

Alternative RNA splicing

• **Observation**: The actual size of many genomic regions used to produce an RNA transcript are MUCH larger than the actual mRNA used in the production of protein

• Introns

- Non-coding segments of an RNA that are removed prior to translation
- "Intervening"

• Exons

• The coding portion of an RNA that is used for translation

RNA splicing

- The removal of introns and the splicing together of exons
- The reaction is catalyzed by a multi-protein RNA complex termed the Spliceosome

(a) Computer model of functioning ribosome

(b) Schematic model showing binding sites

(c) Schematic model with mRNA and tRNA Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Translation

mRNA

- Transcribed and processed RNA from a gene
- Ribosome
 - Proteins
 - Ribosomal RNA

• tRNA

- Transfer RNA
 - Contains an anticodon
 - Contains an amino acid

- The Single stranded RNA that is the transfer RNA forms hydrogen bonds amongst its nucleotides giving it a 3 dimensional shape
- Amino acid forms a covalent bond with the 3' end of the tRNA
- The anticodon, 3' to 5' forms hydrogen bonds with the codon, 5' to 3' of the mRNA

Addition of the amino acid to the tRNA is catalyzed by an enzyme: aminoacyl-tRNA synthetase

 20 different aminoacyltRNA synthetases

- One for each amino acid
- The addition of the amino acid to the tRNA uses ATP

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Translation

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Initiation

• Ribosome, mRNA, tRNA association

Elongation

 Covalent peptide bond formations between successive amino acids

Termination

 Dissociation of ribosome, mRNA, and tRNA

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

- Small subunit binds to the mRNA
- The start codon is recognized by the small subunit
- The initiator tRNA containing the amino acid Met is recruited
- The large subunit binds in a process that utilizes GTP, forming the translation initiation complex

Translation Elongation

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Translation Termination

- A stop codon, UAA, UAG, UGA recruits a protein release factor
- The bond between the tRNA and the polypeptide is hydrolyzed by the release factor
- Dissociation of the mRNA, ribosome, and release factor

Polyribosomes or Polysomes

(a) An mRNA molecule is generally translated simultaneously by several ribosomes in clusters called polyribosomes.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

(b) This micrograph shows a large polyribosome in a prokaryotic cell (TEM).

 More often than not, in both eucaryotic and procaryotic cells and single mRNA contains many ribosomes simultaneously producing polypeptide

Procaryotic cells can couple transcription and translation

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

$DNA \rightarrow RNA \rightarrow protein$

- Transcription
- RNA processing
- Translation

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Cytoplasmic and ER bound ribosomes

- Ribosomes start in the cytoplasm
- A signal sequence in the N terminus of the protein, termed the signal peptide will target a protein for the ER to become part of the Endomembrane System (as discussed earlier in the course)
- The Signal-Recognition Particle, a multi-protein RNA complex facilitates binding of the ribosome to the ER and entry of the synthesizing protein into the ER where it can then proceed to the Golgi apparatus via a transport vesicle

Types of RNAs

- Messenger RNA
 - Codes for polypeptide
- Transfer RNA
 - Functions in translation by bringing amino acids to the mRNA using an anticodon
- Ribosomal RNA
 - Enzymatic RNAs that make up a portion of the Ribosome
- Small nuclear RNA (snRNA)
 - RNAs that are part of the Spliceosome
- SRP RNA
 - RNAs that are part of the Signal Recognition Particle
- snoRNA
 - Process ribosomal RNAs
- siRNA, miRNA
 - Involved in Gene Regulation

Point Mutation

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Types of Point mutations

• Base-Pair substitution

- A change in composition or nucleotide type at a single location
 - Silent: The substitution codes for the SAME amino acid
 - **Missense** Mutation: the substitution codes for another amino acid
 - Nonsense Mutation: the substitution codes for a STOP codon causing premature termination of the polypepetide

• INDELs or Frameshift mutations

- The insertion or deletion of one or more base pairs
 - NO Frameshift: if 3 base pairs (or some multiple of 3) is added, then the reading frame will be the same
 - Frameshift: a change in all subsequent codons
- THE CAT ATE THE DOG
- THE CAT CAT ATE THE DOG
- THE CAT CAT ETH EDO G

Wild type

Base-pair substitution

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Insertion or deletion of 3 nucleotides: no frameshift; extra or missing amino acid

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

- Frameshift can cause
 - MISSENSE
 - NONSENSE